Home
Class 12
MATHS
sum(r=1)^oo tan^-1((6^r)/(2^(2r+1)+3^(2r...

`sum_(r=1)^oo tan^-1((6^r)/(2^(2r+1)+3^(2r+1)))`

Text Solution

Verified by Experts

The correct Answer is:
`Cot^(-1)(3/2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^(oo)tan^(-1)((2)/(1+(2r+1)(2r-1)))

sum_(i=1)^(oo)tan^(-1)((1)/(2r^(2)))=

sum_(r=1)^9 tan^-1(1/(2r^2)) =

Find the sum sum_(r =1)^(oo) tan^(-1) ((2(2r -1))/(4 + r^(2) (r^(2) -2r + 1)))

Find the value of sum_(r=0)^(oo) tan^(-1) ((1)/(1 + r + r^(2)))

The value of sum_(r=1)^(oo)tan^(-1)((4)/(4r^(2)+3))=

Prove that sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)

The value of sum_(r=1)^(oo)tan^(-1)((2r-1)/(r^(4)-2r^(3)+r^(2)+1)) is equal to

Let S _(K) = sum _(r=1) ^(k) tan ^(-1) (( 6 ^r)/( 2 ^( 2 r + 1) + 3 ^( 2r +1))) . Then lim _( k to oo) S _(k) is equal to :

sum_(r=1)^(n)tan^(-1)((2^(r-1))/(1+2^(2r-1))) is equal to