Home
Class 12
MATHS
log(10)sinx+log(10)cosx=-1 , log(10)(sin...

`log_(10)sinx+log_(10)cosx=-1 , log_(10)(sinx+cosx)=1/2(log_(10)n-1)` Then n=

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we start with the equations provided: 1. **Given Equations**: \[ \log_{10}(\sin x) + \log_{10}(\cos x) = -1 \] \[ \log_{10}(\sin x + \cos x) = \frac{1}{2}(\log_{10} n - 1) \] 2. **Combine the First Equation**: Using the logarithmic property that states \(\log a + \log b = \log(ab)\), we can rewrite the first equation: \[ \log_{10}(\sin x \cdot \cos x) = -1 \] This implies: \[ \sin x \cdot \cos x = 10^{-1} = \frac{1}{10} \] 3. **Use the Identity for Sine and Cosine**: We know from trigonometric identities that: \[ \sin x \cdot \cos x = \frac{1}{2} \sin(2x) \] Therefore, we can write: \[ \frac{1}{2} \sin(2x) = \frac{1}{10} \] This leads to: \[ \sin(2x) = \frac{2}{10} = \frac{1}{5} \] 4. **Substituting into the Second Equation**: Now, we need to evaluate the second equation: \[ \log_{10}(\sin x + \cos x) = \frac{1}{2}(\log_{10} n - 1) \] We can rewrite the right side: \[ \frac{1}{2}(\log_{10} n - 1) = \frac{1}{2} \log_{10} n - \frac{1}{2} \] 5. **Express \(\sin x + \cos x\)**: We can use the identity: \[ \sin x + \cos x = \sqrt{(\sin^2 x + \cos^2 x) + 2\sin x \cos x} = \sqrt{1 + 2 \cdot \frac{1}{10}} = \sqrt{1 + \frac{1}{5}} = \sqrt{\frac{6}{5}} = \frac{\sqrt{6}}{\sqrt{5}} \] 6. **Substituting Back**: Now substituting this into the logarithmic equation: \[ \log_{10}\left(\frac{\sqrt{6}}{\sqrt{5}}\right) = \frac{1}{2} \log_{10} n - \frac{1}{2} \] This can be rewritten as: \[ \log_{10}(\sqrt{6}) - \log_{10}(\sqrt{5}) = \frac{1}{2} \log_{10} n - \frac{1}{2} \] 7. **Simplifying the Left Side**: The left side can be simplified: \[ \frac{1}{2} \log_{10}(6) - \frac{1}{2} \log_{10}(5) = \frac{1}{2} (\log_{10}(6) - \log_{10}(5)) = \frac{1}{2} \log_{10}\left(\frac{6}{5}\right) \] 8. **Equating Both Sides**: Now we equate both sides: \[ \frac{1}{2} \log_{10}\left(\frac{6}{5}\right) = \frac{1}{2} \log_{10} n - \frac{1}{2} \] Multiplying through by 2 gives: \[ \log_{10}\left(\frac{6}{5}\right) = \log_{10} n - 1 \] 9. **Solving for \(n\)**: Rearranging gives: \[ \log_{10} n = \log_{10}\left(\frac{6}{5}\right) + 1 \] This can be rewritten as: \[ \log_{10} n = \log_{10}\left(\frac{6}{5} \cdot 10\right) = \log_{10}\left(\frac{60}{5}\right) = \log_{10}(12) \] Therefore, we find: \[ n = 12 \] Thus, the final answer is: \[ \boxed{12} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(10)sin x+log_(10)cos x=-1 and log_(10)(sin x+cos x)=(log_(10)n-1)/(2) then the value of n is (a) 24 (b) 36(c)20(d)12

log_(10)sin x+log_(10)cos x=-1 and log_(10)(sin x+cos x)=((log_(10)n)-1)/(2) then the value of 'n/3' is

If "log"_(10) sin x+"log"_(10)cos x=-1 and "log"_(10)(sin x+cosx)=(("log"_(10)n)n-1)/(2) then the value of n is ____________

If x in (0, (pi)/(2)) and sinx=(3)/(sqrt(10)) , Let k=log_(10)sinx+log_(10)cos x+2log_(10)cot x +log_(10) tan x then the value of k satisfies

log_(10)10+log_(10)10^(2)+ . . .+log_(10)10^(n)

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

If log_(10)(sin(x+pi/4))=(log_(10)6-1)/2 , the value of log_(10)(sinx)+log_(10)(cosx) is

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

If (1)/(log_(x)10)=(2)/(log_(a)10)-2, then x=

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to