Home
Class 12
MATHS
sqrt(x+14-8sqrt(x-2))+ sqrt(x+23-10sqrt(...

`sqrt(x+14-8sqrt(x-2))+ sqrt(x+23-10sqrt(x-2))=3` Find number of real root

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sqrt{x + 14 - 8\sqrt{x - 2}} + \sqrt{x + 23 - 10\sqrt{x - 2}} = 3, \] we will follow these steps: ### Step 1: Simplify the square roots We can rewrite the expressions under the square roots. Let \( y = \sqrt{x - 2} \). Then, \( x = y^2 + 2 \). Substituting \( x \) in the equation: \[ \sqrt{(y^2 + 2) + 14 - 8y} + \sqrt{(y^2 + 2) + 23 - 10y} = 3 \] This simplifies to: \[ \sqrt{y^2 - 8y + 16} + \sqrt{y^2 - 10y + 25} = 3 \] ### Step 2: Further simplify the square roots The expressions inside the square roots can be factored: \[ \sqrt{(y - 4)^2} + \sqrt{(y - 5)^2} = 3 \] This gives us: \[ |y - 4| + |y - 5| = 3 \] ### Step 3: Analyze cases based on the absolute values We will consider two cases based on the values of \( y \). **Case 1:** \( y < 4 \) In this case, both absolute values will be negative: \[ -(y - 4) - (y - 5) = 3 \implies -2y + 9 = 3 \implies 2y = 6 \implies y = 3 \] Since \( y < 4 \), this solution is valid. **Case 2:** \( 4 \leq y < 5 \) Here, we have: \[ (y - 4) - (y - 5) = 3 \implies 1 = 3 \] This case does not yield a valid solution. **Case 3:** \( y \geq 5 \) In this case, both absolute values will be positive: \[ (y - 4) + (y - 5) = 3 \implies 2y - 9 = 3 \implies 2y = 12 \implies y = 6 \] Since \( y \geq 5 \), this solution is valid. ### Step 4: Convert back to \( x \) Now we convert the valid \( y \) values back to \( x \): 1. For \( y = 3 \): \[ \sqrt{x - 2} = 3 \implies x - 2 = 9 \implies x = 11 \] 2. For \( y = 6 \): \[ \sqrt{x - 2} = 6 \implies x - 2 = 36 \implies x = 38 \] ### Conclusion: Number of real roots The valid \( x \) values we found are \( 11 \) and \( 38 \). Therefore, the number of real roots is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of real solutions the equation sqrt(x+14-8sqrt(x-2))+sqrt(x+23-10sqrt(x-2))=3 are

sqrt(3)x^2+10x+8sqrt(3)

If (sqrt(x + 2) + sqrt(x-3))/(sqrt(x+2) - sqrt(x - 3)) = 5 , then the value of x is

(sqrt3+sqrt2)^x+(sqrt3-sqrt2)^x=10 find sum of values of x

Let S equiv {x in R : (sqrt 3 sqrt 2)^x (sqrt 3 - sqrt 2)^x = 10} . Then the number of elements in S is :

8sqrt((x)/(x+3))-sqrt((x+3)/(x))=2

If (sqrt(2))^(x)+(sqrt(3))^(x)=(sqrt(13))^(x//2) , then the number of real values of x is

If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) , find the value of x^(2) + (1)/(x^(2)) .

int_(2)^(8)(sqrt(10-x))/(sqrt(x)+sqrt(10-x))dx