Home
Class 12
MATHS
If log(1/sqrt2)((absz+11)/((absz-1)^2 ))...

If `log_(1/sqrt2)((absz+11)/((absz-1)^2 ))ge 2` Find `absz_min`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a complex number z|z| =1,. satisfy log _((1)/(sqrt2)) ((|z| +11)/((|z| -1) ^(2)))le 2. Then, the largest value of |z| is equal to "_______"

log_((sqrt(2)+1))(sqrt(2)-1)=

Solve for x:log_(1//sqrt2),(x-1)gt2

If a=(1)/(3-sqrt(11)) and b= (1)/(a) , then find a^(2)-b^(2)

The value of log_((sqrt(2)-1))(5sqrt(2)-7) is :

2^(((absz+3)*(absz-1))/(absz+1) ge log_sqrt2abs(5sqrt7+9i) . Find the minimum value of absz

log_(2-sqrt(3))backslash(2+sqrt(3))=-1

If log_(1//2)(4-x)ge log_(1//2)2-log_(1//2)(x-1) , then x can belong to

Evaluate the following : int_(0)^(11//sqrt2)(sin^(-1)x)/((1-x^(2))^(3//2))dx.