Home
Class 12
MATHS
If f(x)=log2(1+tan((pix)/4)). Find lim(n...

If `f(x)=log_2(1+tan((pix)/4))`. Find `lim_(nrarroo)2/n(f(1/n)+f(2/n)+ . . . + f(1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{n \to \infty} \frac{2}{n} \left( f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + \ldots + f(1) \right) \] where \( f(x) = \log_2\left(1 + \tan\left(\frac{\pi x}{4}\right)\right) \). ### Step 1: Rewrite the limit as a Riemann Sum The expression inside the limit can be recognized as a Riemann sum for the function \( f(x) \) over the interval \([0, 1]\): \[ \frac{2}{n} \sum_{r=1}^{n} f\left(\frac{r}{n}\right) \approx \int_0^1 f(x) \, dx \text{ as } n \to \infty. \] ### Step 2: Evaluate the integral We need to evaluate: \[ \int_0^1 f(x) \, dx = \int_0^1 \log_2\left(1 + \tan\left(\frac{\pi x}{4}\right)\right) \, dx. \] ### Step 3: Change of variable Let \( t = \frac{\pi x}{4} \). Then, \( x = \frac{4t}{\pi} \) and \( dx = \frac{4}{\pi} dt \). The limits change as follows: - When \( x = 0 \), \( t = 0 \). - When \( x = 1 \), \( t = \frac{\pi}{4} \). Thus, the integral becomes: \[ \int_0^{\frac{\pi}{4}} \log_2\left(1 + \tan(t)\right) \cdot \frac{4}{\pi} \, dt. \] ### Step 4: Factor out constants We can factor out the constant: \[ \frac{4}{\pi} \int_0^{\frac{\pi}{4}} \log_2\left(1 + \tan(t)\right) \, dt. \] ### Step 5: Evaluate the integral using properties of logarithms Using the property of logarithms, we can express \( \log_2\left(1 + \tan(t)\right) \) in terms of base \( e \): \[ \log_2\left(1 + \tan(t)\right) = \frac{\ln(1 + \tan(t))}{\ln(2)}. \] Thus, the integral becomes: \[ \frac{4}{\pi \ln(2)} \int_0^{\frac{\pi}{4}} \ln(1 + \tan(t)) \, dt. \] ### Step 6: Evaluate the integral \( \int_0^{\frac{\pi}{4}} \ln(1 + \tan(t)) \, dt \) This integral can be evaluated using known results or numerical methods, but for the sake of this problem, we can denote it as \( I \): \[ I = \int_0^{\frac{\pi}{4}} \ln(1 + \tan(t)) \, dt. \] ### Final Result The final limit can be expressed as: \[ \lim_{n \to \infty} \frac{2}{n} \left( f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + \ldots + f(1) \right) = \frac{4I}{\pi \ln(2)}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x+1 . Find lim_(nrarroo)1/n(1+f(5/n)+f(10/n)+. . . + f(5((n-1)/(n)))

Let F: (0,2) to R be defined as f (x) = log _(2) (1 + tan ((pix)/(4))). Then lim _( n to oo) (2)/(n) (f ((1)/(n )) + f ((2)/(n)) + …+ f (1) ) is equal to

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=xAAxepsilonR and lim_(nrarroo)(f(x)-f(x/(2^(n))))=P(x) . Then P(x) is

Let f(x)=(1)/(1+x) and let g(x,n)=f(f(f(….(x)))) , then lim_(nrarroo)g(x, n) at x = 1 is

f(x)=(x+1)(x+2)(x+2^(2))+...+(x+2^(n-1)) and g(x)=lim_(n rarr oo)((f(x+(1)/(n)))/(f(x)))^(n) if f(x)!=0=0 if f(x)=0 then g(0)=

If f(x)=(a-x^n)^(1/n) then find f(f(x))

If f:R rarr R is continous function satisying f(0) =1 and f(2x) -f(x) =x, AAx in R , then lim_(nrarroo) (f(x)-f((x)/(2^(n)))) is equal to

If f(x) = log ((m(x))/(n(x))), m(1) = n(1) = 1 and m'(1) = n'(1) = 2, " then" f'(1) is equal to

Let f be a positive differentiable function defined on (0,oo) and phi(x)=lim_(nrarroo) (f(x+(1)/(n))/f(x))^(n) . Then intlog_(e)(phi(x))dx=