Home
Class 12
MATHS
Find the maximum value of abs((sin^2x,1+...

Find the maximum value of `abs((sin^2x,1+cos^2x,cos2x),(1+sin^2x,cos^2x,cos2x),(sin^2x,cos^2x,sin2x))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of f(x)=|(sin^(2)x,1+cos^(2)x,cos2x),(1+sin^(2)x,cos^(2)x,cos2x),(sin^(2)x,cos^(2)x,sin2x)|,x inR is :

what is the maximum value of sin2x cos2x?

Find the minimum and maximum values of sin2x-cos2x

Let f(x)=abs((sin^2x,-2+cos^2x,cos2x),(2+sin^2x,cos^2x,cos2x),(sin^2x,cos^2x,1+cos2x)) , x in [0,pi] then the maximum value of f(x) is

Find the maximum value of 4sin^(2)x+3cos^(2)x+sin((x)/(2))+cos((x)/(2))

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

If f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x),(sin^(2)x,1+cos^(2)x,4 sin 2x),(sin^(2)x,cos^(2)x,1+4 sin 2x)| What is the maximum value of f(x)?

If f(x)=|{:(5+sin^2x,cos^2x,4sin2x),(sin^2x,5+cos^2x,4sin2x),(sin^2x,cos^2x,5+4sin2x):}| then evaluate