Home
Class 12
MATHS
f(x+1)=xf(x),g(x)=ln(f(x)) find abs(g''(...

`f(x+1)=xf(x),g(x)=ln(f(x))` find `abs(g''(5)-g''(1))`:

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following functions are identical? f(x)=1nx^(2) and g(x)=2ln xf(x)=log_(x)e and g(x)=(1)/(log x)f(x)=sin(cos^(-1)x) and g(x)=cos(sin^(-1)x) none of these

int_( is )((f(x)g'(x)-f'(x)g(x))/(f(x)g(x)))*(log(g(x))-log(f(x))dx

If f(x)=(1)/(1-x)andg(x)=(x-1)/(x) find (f @g) and(g@f). Comment upon your answer

int(f(x)*g'(x)-f'(x)g(x))/(f(x)*g(x)){log g(x)-log f(x)}dx

f(x)=e^(ln cot),g(x)=cot^(-1)x

Let f(x)=x^(2)+xg^(2)(1)+g'(2) and g(x)=f(1)*x^(2)+xf'(x)+f''(x) then find f(x) and g(x)

Let f(x)=ln x o* g(x)=e^(x). if f_(1)(x)=f(|x|),f_(2)(x)=f(|x|),f_(3)(x)=|f(|x|)|,g_(1)(x)=(1)/(g(|x|))

If f(1) =g(1)=2 , then lim_(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-g(x)) is equal to