Home
Class 12
MATHS
2^(((absz+3)*(absz-1))/(absz+1) ge logsq...

`2^(((absz+3)*(absz-1))/(absz+1) ge log_sqrt2abs(5sqrt7+9i)`. Find the minimum value of `absz`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

arg((z-2)/(z+2))=pi/4 , Find the minimum value of abs(z-9sqrt2-2i)^2

The least value of |z| where z is complex number which satisfies the inequality exp (((|z|+3)(|z|-1))/(|z|+1|)log_(e)2)gtlog_(sqrt2)|5sqrt7+9i|,i=sqrt(-1) is equal to :

The value of log_((sqrt(2)-1))(5sqrt(2)-7) is :

Find the value of : (1-sqrt3i)^(2//5) .

If a=(sqrt(3)+1)/(sqrt(3)-1) and b=(sqrt(3)-1)/(sqrt(3)+1) ,find the value of a^(2)+ab-b^(2)

If log_(1/sqrt2)((absz+11)/((absz-1)^2 ))ge 2 Find absz_min

If a=(sqrt(5)+sqrt(2))/(sqrt(5)-sqrt(2)) and b=(sqrt(5)-sqrt(2))/(sqrt(5)+sqrt(2)), find the value of (a^(2)+ab+b^(2))/(a^(2)-ab+b^(2))

Let a=sqrt(57+40sqrt2)-sqrt(57-40sqrt2) and b=sqrt(25^(1/(log_8(5)))+49^(1/(log_6(7)) and c is the value of x^3-3x-14 where x=(7+5sqrt2)^(1/3)-1/(7+5sqrt2)^(1/3). Find the value of (a+b+c)

Find the sum of 1-2sqrt5 and 3+7sqrt5