Home
Class 12
MATHS
int0^10 [x]e^([x])/e^(x-1)dx where [x] i...

`int_0^10 [x]e^([x])/e^(x-1)dx` where `[x]` is GIF

A

`9(e-1)`

B

`9(e+1)`

C

`45(e-1)`

D

`45(e+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{10} [x] e^{[x]} e^{-(x-1)} \, dx \), where \([x]\) is the greatest integer function (GIF), we can break down the integral into intervals where the value of \([x]\) is constant. ### Step 1: Identify the intervals The greatest integer function \([x]\) takes constant integer values in the intervals: - \([0, 1)\) where \([x] = 0\) - \([1, 2)\) where \([x] = 1\) - \([2, 3)\) where \([x] = 2\) - \([3, 4)\) where \([x] = 3\) - \([4, 5)\) where \([x] = 4\) - \([5, 6)\) where \([x] = 5\) - \([6, 7)\) where \([x] = 6\) - \([7, 8)\) where \([x] = 7\) - \([8, 9)\) where \([x] = 8\) - \([9, 10)\) where \([x] = 9\) ### Step 2: Break the integral into parts We can express the integral as a sum of integrals over each interval: \[ I = \sum_{n=0}^{9} \int_n^{n+1} [x] e^{[x]} e^{-(x-1)} \, dx \] This simplifies to: \[ I = \sum_{n=0}^{9} \int_n^{n+1} n e^n e^{-(x-1)} \, dx \] ### Step 3: Evaluate each integral For each interval \([n, n+1)\): \[ I_n = n e^n \int_n^{n+1} e^{-(x-1)} \, dx \] The integral can be computed as: \[ \int e^{-(x-1)} \, dx = -e^{-(x-1)} \] Evaluating from \(n\) to \(n+1\): \[ I_n = n e^n \left[-e^{-(x-1)}\right]_{n}^{n+1} = n e^n \left[-e^{-(n+1-1)} + e^{-(n-1)}\right] \] This simplifies to: \[ I_n = n e^n \left[-e^{-n} + e^{-(n-1)}\right] = n e^n \left[-\frac{1}{e^n} + \frac{e}{e^n}\right] = n e^n \left[\frac{e - 1}{e^n}\right] = n (e - 1) \] ### Step 4: Sum over all intervals Now we sum \(I_n\) from \(n=0\) to \(n=9\): \[ I = \sum_{n=0}^{9} n (e - 1) = (e - 1) \sum_{n=0}^{9} n \] The sum of the first 9 natural numbers is: \[ \sum_{n=0}^{9} n = \frac{9 \cdot (9 + 1)}{2} = \frac{9 \cdot 10}{2} = 45 \] Thus, \[ I = (e - 1) \cdot 45 \] ### Final Result The value of the integral is: \[ I = 45(e - 1) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the integral I=int_(0)^(10)([x]e^([x]))/(e^(x-1))dx , where [x] denotes the greatest integer less than or equal to x. Then the value of I is equal to :

int_(0)^(100)e^(x-[x])dx= (where [] is GIF )

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int_(0)^(10)e^(2x)dx

int_0^1 e^-x/(1+e^x)dx

The value of definite integral int_0^10 ([x] + |x-2|)dx , where [.] represents G.I.F. is

The value of definite integral int_0^10 ([x] + |x-2|)dx , where [.] represents G.I.F. is

int_(0)^(1)(e^(-x))/(1+e^(-x))dx

int_(0)^(1)x e^(x)dx=