Home
Class 12
MATHS
If x^y=e^(x-y), then show that dy/dx=(lo...

If `x^y=e^(x-y)`, then show that `dy/dx=(logx)/(1+logx)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If ylog x=(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2))

y=x^(logx)+(logx)^(x)

If (x^(x)+y^(x))=1," show that "(dy)/(dx)=-{(x^(x)(1+logx)+y^(x)(logy))/(xy^(x-1))}

If e^(y)(x+1)=1, show that (dy)/(dx)=-e^(y)

x dy/dx+y=y^2 logx

x(dy)/(dx)=y(logy-logx+1)

If x^y= y^x , prove that (dy)/(dx)=((y/x-logy))/((x/y-logx))

Solve: x dy/dx=y(logy-logx+1)