Home
Class 12
MATHS
Let f(x) = e^x + sin x be defined on the...

Let `f(x) = e^x + sin x` be defined on the interval [–4, 0]. Find the odd and even extension of f(x) in the interval [–4, 4].

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x^(2)+x be defined on the interval [0,2). Find the odd and even extensions of f(x) in the interval [-2,2] .

Let the function f(x)=x^(2)+x+sinx- cosx+log(1+|x|) be defined on the interval [0,1]. The odd extension of f(x) to the interval [-1,1] is

Let the function f(x)=3x^(2)-4x+5log(1+|x|) be defined on the interval [0,1]. The even extension of f(x) to the interval [0,1]. The even extension of f(x) to the interval [-1,1] is

Let f(x)=3sin^(3)x+4x-sin|x|+log(1+|x|) beidd euen adefined on the interval [0,1]. The even extensionof f(x) to the interval [-1,0] is

Let the function f(x)=4 sinx+3 cos x+ log (|x|+sqrt(1+x^(2))) be defined on the interval [0,1]. The odd extension of f(x) to the inteval [-1,1] is

f(x)=log x, interval [1,e]

The function f(x) is defined on the interval [0,1]. Find the domain of definition of the functie f(sin x)

Let f(x)=x- sinx. Find the intervals of monotonicity.

f(x)=x-sin x. Find the intervals of monotonicity.