Home
Class 11
MATHS
The equation of the circle having its ce...

The equation of the circle having its centre on the line `x + 2y-3 = 0` and passing through the points of intersection of the circles `x^2+y^2-2x -4y+1=0 and x^2+ y^2 -4x-2y+4=0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of the circle having its centre on the line x+2y-3=0 and passing through the points of intersection of the circles x^(2)+y^(2)-2x-4y+1=0andx^(2)+y^(2)-4x-2y+4=0 is x^(2)+y^(2)-6x+7=0x^(2)+y^(2)-3y+4=0 c.x^(2)+y^(2)-2x-2y+1=0x^(2)+y^(2)+2x-4y+4=0

The equation of the circle having the center on the line x+2y-3=0 and passing through the point intersection of the circles x^(2)+y^(2)-2x-4y+1=0andx^(2)+y^(2)-4x-2y+4=0 is x^(2)+y^(2)-6x+7=0x^(2)+y^(2)-3u-2y+4=0x^(2)+y^(2)-2x-2y+1=0x^(2)+y^(2)+2x-2y+4=0

The equation of the circle having centre (0, 0) and passing through the point of intersection of the lines 4x + 3y = 2 and x + 2y = 3 is

The point of tangency of the circles x^(2)+y^(2)-2x-4y=0 and x^(2)+y^(2)-8y-4=0 is

Find the point of intersection of the circle x^(2)+y^(2)-3x-4y+2=0 with the x -axis.

Find the equation of the circle passing through the points of intersection of the circles x^(2)+y^(2)-2x-4y-4=0 and x^(2)+y^(2)-10x-12y+40=0 and whose radius is 4.

The equation of the circle having the lines y^(2) – 2y + 4x – 2xy = 0 as its normals & passing through the point (2, 1) is