Home
Class 11
MATHS
If Sn=^nC0.^nC1+^nC1.^nC2+.....+^nC(n-1)...

If `S_n=^nC_0.^nC_1+^nC_1.^nC_2+.....+^nC_(n-1).^nC_n` and if `S_(n+1)/S_n=15/4` , then the sum of all possible values of n is (A) `2` (B) `4` (C) `6` (D) `8`

Promotional Banner

Similar Questions

Explore conceptually related problems

If s_n=""^nC_0+2*""^nC_1+3*""^nC_2+...+(n+1)*""^nC_n then find sum_(n=1)^oos_n .

If .^nC_30=^nC_4 , find n

The value of ""^0C_0-^nC_1+^nC_2-....+ -1^(n^n)C_n is

If .^nC_12=^nC_8 , find .^nC_17 and ^22C_n

If ^nC_4, ^nC_5 and ^nC_6 are in A.P. then the value of n will be (A) 14 (B) 11 (C) 7 (D) 8

If nC_(4),^(n)C_(5) and ^(n)C_(6) are in AP, then n is

If (nC_0)/(2^n)+2.(nC_1)/2^n+3.(nC_2)/2^n+....(n+1)(nC_n)/2^n=16 then the value of 'n' is