Home
Class 12
MATHS
Cot^-1(alpha)=Cot^-1(2)+Cot^-1(8)+Cot^-1...

`Cot^-1(alpha)=Cot^-1(2)+Cot^-1(8)+Cot^-1(18)+Cot^-1(32)`+ . . then `alpha`=?

A

1.03

B

1

C

1.01

D

1.02

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot^{-1}(\alpha) = \cot^{-1}(2) + \cot^{-1}(8) + \cot^{-1}(18) + \cot^{-1}(32) + \ldots \), we will use the properties of inverse cotangent and the series given. ### Step-by-Step Solution: 1. **Understanding the Series**: We are given a series of the form \( \cot^{-1}(2) + \cot^{-1}(8) + \cot^{-1}(18) + \cot^{-1}(32) + \ldots \). We need to identify a pattern in the terms. 2. **Identifying the Pattern**: The terms can be rewritten as: - \( \cot^{-1}(2) = \cot^{-1}\left(\frac{2}{1^2}\right) \) - \( \cot^{-1}(8) = \cot^{-1}\left(\frac{2 \cdot 2^2}{2^2}\right) \) - \( \cot^{-1}(18) = \cot^{-1}\left(\frac{2 \cdot 3^2}{3^2}\right) \) - \( \cot^{-1}(32) = \cot^{-1}\left(\frac{2 \cdot 4^2}{4^2}\right) \) This suggests a general term of the form \( \cot^{-1}(2n^2) \) for \( n = 1, 2, 3, \ldots \). 3. **Using the Cotangent Addition Formula**: We can use the identity: \[ \cot^{-1}(x) + \cot^{-1}(y) = \cot^{-1}\left(\frac{xy - 1}{x + y}\right) \] to combine the terms. 4. **Rewriting the Series**: We can express the series as: \[ \cot^{-1}(2) + \cot^{-1}(8) + \cot^{-1}(18) + \cot^{-1}(32) + \ldots = \sum_{n=1}^{\infty} \cot^{-1}(2n^2) \] 5. **Converting to Tangent**: We can convert the cotangent terms to tangent: \[ \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \] Thus, we rewrite the series: \[ \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{1}{2n^2}\right) \] 6. **Finding the Sum**: The sum can be evaluated using the formula for the sum of arctangents: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \] However, for an infinite series, we can recognize that the series converges to a specific value. 7. **Evaluating the Infinite Series**: The series converges to \( \frac{\pi}{4} \) based on the behavior of the terms as \( n \) approaches infinity. 8. **Setting the Equation**: We have: \[ \cot^{-1}(\alpha) = \frac{\pi}{4} \] 9. **Finding \( \alpha \)**: From the cotangent function, we know: \[ \cot\left(\frac{\pi}{4}\right) = 1 \] Therefore, we conclude: \[ \alpha = 1 \] ### Final Answer: \[ \alpha = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If cot^(-1) ( alpha) = cot^(-1)(2) + cot^(-1)(8) + cot^(-1)(18) + cot ^(-1)(32) + "…………" upto 100 terms , then alpha is :

2cot(cot^(-1)(3)+cot^(-1)(7)+cot^(-1)(13)+cot^(-1)(21)) has the value

Find- cot^(-1)1+cot^(-1)2+cot^(-1)3

cot^(-1)x+cot^(-1)(n^(2)-x+1)=cot^(-1)(n-1)

Prove that : cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)3

Prove that cot^(-1)(3)-cot^(-1)(4)=cot^(-1)(13)

if cot^(-1)alpha+cot^(-1)beta=cot^(-1)x then x

If: cot^(-1)alpha + cot^(-1)beta = cot^(-1) x , then: x=

Prove that : cot ^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)3

If S_(n)=cot^(-1)(3)+cot^(-1)(7)+cot^(-1)(13)+cot^(-1)(21)+.,n terms,then