Home
Class 12
MATHS
A=[(sinalpha,0),(0,sinalpha)] and det(A^...

`A=[(sinalpha,0),(0,sinalpha)] and det(A^2-1/2I)=0` , then a possible value of `alpha` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the possible value of \( \alpha \) given the matrix \( A \) and the condition \( \text{det}(A^2 - \frac{1}{2}I) = 0 \). ### Step 1: Define the matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} \sin \alpha & 0 \\ 0 & \sin \alpha \end{pmatrix} \] ### Step 2: Compute \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} \sin \alpha & 0 \\ 0 & \sin \alpha \end{pmatrix} \cdot \begin{pmatrix} \sin \alpha & 0 \\ 0 & \sin \alpha \end{pmatrix} \] Calculating this gives: \[ A^2 = \begin{pmatrix} \sin^2 \alpha & 0 \\ 0 & \sin^2 \alpha \end{pmatrix} \] ### Step 3: Define the identity matrix \( I \) The identity matrix \( I \) in this case is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Thus, \( \frac{1}{2}I \) is: \[ \frac{1}{2}I = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \] ### Step 4: Compute \( A^2 - \frac{1}{2}I \) Now we compute \( A^2 - \frac{1}{2}I \): \[ A^2 - \frac{1}{2}I = \begin{pmatrix} \sin^2 \alpha & 0 \\ 0 & \sin^2 \alpha \end{pmatrix} - \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \] This results in: \[ A^2 - \frac{1}{2}I = \begin{pmatrix} \sin^2 \alpha - \frac{1}{2} & 0 \\ 0 & \sin^2 \alpha - \frac{1}{2} \end{pmatrix} \] ### Step 5: Find the determinant The determinant of a diagonal matrix is the product of its diagonal elements: \[ \text{det}(A^2 - \frac{1}{2}I) = \left(\sin^2 \alpha - \frac{1}{2}\right) \cdot \left(\sin^2 \alpha - \frac{1}{2}\right) = \left(\sin^2 \alpha - \frac{1}{2}\right)^2 \] Setting this equal to zero gives: \[ \left(\sin^2 \alpha - \frac{1}{2}\right)^2 = 0 \] This implies: \[ \sin^2 \alpha - \frac{1}{2} = 0 \] Thus: \[ \sin^2 \alpha = \frac{1}{2} \] ### Step 6: Solve for \( \alpha \) Taking the square root, we find: \[ \sin \alpha = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2} \] The angles \( \alpha \) that satisfy this are: \[ \alpha = \frac{\pi}{4} + n\pi \quad \text{for } n \in \mathbb{Z} \] Thus, a possible value of \( \alpha \) is: \[ \alpha = \frac{\pi}{4} \] ### Final Answer A possible value of \( \alpha \) is \( \frac{\pi}{4} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If A = ({:(0, sin alpha),(sinalpha,0):}) and det ( A^(2) - ( 1)/( 2) I )=0 , then a possible value of alpha is :

Let f(x)=|(4x+1,-cosx,-sinx),(6,8sinalpha,0),(12sinalpha, 16sin^(2)alpha,1+4sinalpha)| and f(0)=0 . If the sum of all possible values of alpha is kpi for alpha in [0, 2pi] , then the value of k is equal to

If sinalpha=1/2 and cosbeta=1/2 , then the value of (alpha+beta) is

If A=[{:(cosalpha,-sinalpha),(sinalpha,cosalpha):}] , then find the least value of alpha for which A+A'=I.

(1-cos alpha)/(sinalpha)=tan(alpha/2)