Home
Class 12
MATHS
If f(x)=(cos(sinx)-cosx)/x^4 is continuo...

If `f(x)=(cos(sinx)-cosx)/x^4` is continuous over the domain and `f(0)=1/k` , then `k=?`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) such that \( f(0) = \frac{1}{k} \) for the function \[ f(x) = \frac{\cos(\sin x) - \cos x}{x^4} \] we need to ensure that \( f(x) \) is continuous at \( x = 0 \). This requires us to evaluate the limit of \( f(x) \) as \( x \) approaches 0. ### Step-by-step Solution: 1. **Evaluate the Limit**: We need to find: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{x^4} \] 2. **Apply the Cosine Difference Formula**: We can use the identity \( \cos a - \cos b = -2 \sin\left(\frac{a+b}{2}\right) \sin\left(\frac{a-b}{2}\right) \): Let \( a = \sin x \) and \( b = x \): \[ \cos(\sin x) - \cos x = -2 \sin\left(\frac{\sin x + x}{2}\right) \sin\left(\frac{\sin x - x}{2}\right) \] 3. **Substituting into the Limit**: Thus, we rewrite the limit: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{-2 \sin\left(\frac{\sin x + x}{2}\right) \sin\left(\frac{\sin x - x}{2}\right)}{x^4} \] 4. **Using Taylor Series Expansion**: We can expand \( \sin x \) around 0: \[ \sin x = x - \frac{x^3}{6} + O(x^5) \] Therefore, \[ \sin x - x = -\frac{x^3}{6} + O(x^5) \] and \[ \sin x + x = 2x - \frac{x^3}{6} + O(x^5) \] 5. **Evaluate the Sine Terms**: Substituting back: \[ \sin\left(\frac{\sin x + x}{2}\right) \approx \sin\left(x - \frac{x^3}{12}\right) \approx x - \frac{x^3}{12} \] and \[ \sin\left(\frac{\sin x - x}{2}\right) \approx \sin\left(-\frac{x^3}{12}\right) \approx -\frac{x^3}{12} \] 6. **Combining the Results**: Now substituting these approximations into the limit: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{-2 \left(x - \frac{x^3}{12}\right) \left(-\frac{x^3}{12}\right)}{x^4} \] Simplifying gives: \[ = \lim_{x \to 0} \frac{2 \left(x - \frac{x^3}{12}\right) \frac{x^3}{12}}{x^4} = \lim_{x \to 0} \frac{2 \left(x^4 - \frac{x^6}{12}\right)}{12x^4} = \lim_{x \to 0} \frac{2}{12} = \frac{1}{6} \] 7. **Setting the Limit Equal to \( f(0) \)**: Since \( f(0) = \frac{1}{k} \), we have: \[ \frac{1}{k} = \frac{1}{6} \] Therefore, solving for \( k \): \[ k = 6 \] ### Final Answer: \[ k = 6 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x) = ( cos ( sin x ) - cos x )/( x^(4)) is continuous at each point in its domain and f(0) = ( 1)/( K ) , then k is "_______________" .

If f(x) = -4sinx+cosx for x =pi/2 is continuous then

The value of f(0), so that the function f(x)=(1-cos(1-cosx))/(x^(4)) is continuous everywhere is

The value of f(0), so that the function f(x) = (1-cos (1-cosx))/(x^4) is continuous everywhere , is

If f(x) = ((1+sinx)-sqrt(1-sinx))/(x) , x != 0 , is continuous at x = 0, then f(0) is

f(x)= (1-sinx+cosx)/(1+sinx+cosx) discontinuous at x=pi . Find f(pi) so that f(x) is continuous x=pi

If the function f(x) = (x(e^(sinx) -1))/( 1 - cos x ) is continuous at x =0 then f(0)=

If f(0) = 2 , and f(x) = (1-cos kx)/(x.sin x) , x != 0 , is continuous at x = 0 , then : k =

If f(x) = {((1-cosx)/x, ",", x != 0),(k, ",", x = 0):} is continuous at x = 0 then k =