Home
Class 12
MATHS
dy/dx=xy-1+x-y , y(0)=0 then find y(1)...

`dy/dx=xy-1+x-y , y(0)=0` then find `y(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \(\frac{dy}{dx} = xy - 1 + x - y\) with the initial condition \(y(0) = 0\), we will follow these steps: ### Step 1: Rearranging the equation We start with the given equation: \[ \frac{dy}{dx} = xy - 1 + x - y \] Rearranging the terms, we can write: \[ \frac{dy}{dx} = xy - y + x - 1 \] Factoring out \(y\) from the first two terms: \[ \frac{dy}{dx} = y(x - 1) + (x - 1) \] This can be factored further: \[ \frac{dy}{dx} = (x - 1)(y + 1) \] ### Step 2: Separating variables Next, we separate the variables: \[ \frac{dy}{y + 1} = (x - 1)dx \] ### Step 3: Integrating both sides Now we integrate both sides: \[ \int \frac{dy}{y + 1} = \int (x - 1)dx \] The left side gives: \[ \ln |y + 1| = \int (x - 1)dx = \frac{x^2}{2} - x + C \] ### Step 4: Applying the initial condition We apply the initial condition \(y(0) = 0\): \[ \ln |0 + 1| = \frac{0^2}{2} - 0 + C \] This simplifies to: \[ \ln 1 = 0 + C \implies C = 0 \] Thus, we have: \[ \ln |y + 1| = \frac{x^2}{2} - x \] ### Step 5: Solving for \(y\) Exponentiating both sides gives: \[ y + 1 = e^{\frac{x^2}{2} - x} \] So, \[ y = e^{\frac{x^2}{2} - x} - 1 \] ### Step 6: Finding \(y(1)\) Now, we substitute \(x = 1\) to find \(y(1)\): \[ y(1) = e^{\frac{1^2}{2} - 1} - 1 = e^{\frac{1}{2} - 1} - 1 = e^{-\frac{1}{2}} - 1 \] ### Final Answer Thus, the value of \(y(1)\) is: \[ y(1) = e^{-\frac{1}{2}} - 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

dy/dx + 2xy - x = 0, y(0) = 3.

If (dy)/(dx)=(e^(y)-x)^(-1) and y(0)=0 then find the solution

If (dy)/(dx)=1+x+y+xy and y(-1)=0 then function y is :

If (dy)/(dx)=1+x+y+xy and y(-1)=0, then function y is

Which of the following is true for y(x) that satisfies the differential equation ( dy )/( dx ) = xy -1 +x -y , y (0) = 0 :

x^2dy+(y-1/x)dx=0 at y(1)=1 then find the value of y(1/2)

if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))