Home
Class 12
MATHS
lim(xrarr0^+)((cos^-1(x-[x]^2))*sin^-1((...

`lim_(xrarr0^+)((cos^-1(x-[x]^2))*sin^-1((x-[x]^2)))/(x-x^3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0^+} \frac{\cos^{-1}(x - [x]^2) \cdot \sin^{-1}(x - [x]^2)}{x - x^3} \] we will break it down step by step. ### Step 1: Analyze the expression inside the limit As \( x \to 0^+ \), we need to evaluate \( [x] \), which is the greatest integer function. For \( 0 < x < 1 \), we have \( [x] = 0 \). Therefore, \( [x]^2 = 0^2 = 0 \). So, we can simplify \( x - [x]^2 \) to: \[ x - [x]^2 = x - 0 = x \] ### Step 2: Substitute into the limit Now, substituting this back into the limit, we have: \[ \lim_{x \to 0^+} \frac{\cos^{-1}(x) \cdot \sin^{-1}(x)}{x - x^3} \] ### Step 3: Simplify the denominator Next, we simplify the denominator \( x - x^3 \): \[ x - x^3 = x(1 - x^2) \] ### Step 4: Rewrite the limit Now, our limit becomes: \[ \lim_{x \to 0^+} \frac{\cos^{-1}(x) \cdot \sin^{-1}(x)}{x(1 - x^2)} \] ### Step 5: Evaluate the limit as \( x \to 0^+ \) As \( x \to 0^+ \): - \( \cos^{-1}(x) \to \cos^{-1}(0) = \frac{\pi}{2} \) - \( \sin^{-1}(x) \to \sin^{-1}(0) = 0 \) Thus, the product \( \cos^{-1}(x) \cdot \sin^{-1}(x) \) approaches: \[ \frac{\pi}{2} \cdot 0 = 0 \] ### Step 6: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule. We differentiate the numerator and denominator: 1. **Numerator**: - The derivative of \( \cos^{-1}(x) \) is \( -\frac{1}{\sqrt{1-x^2}} \) - The derivative of \( \sin^{-1}(x) \) is \( \frac{1}{\sqrt{1-x^2}} \) Using the product rule: \[ \frac{d}{dx}[\cos^{-1}(x) \cdot \sin^{-1}(x)] = \cos^{-1}(x) \cdot \frac{1}{\sqrt{1-x^2}} + \sin^{-1}(x) \cdot \left(-\frac{1}{\sqrt{1-x^2}}\right) \] 2. **Denominator**: - The derivative of \( x(1 - x^2) \) is \( 1 - 3x^2 \) Now we can rewrite the limit: \[ \lim_{x \to 0^+} \frac{\cos^{-1}(x) \cdot \frac{1}{\sqrt{1-x^2}} - \sin^{-1}(x) \cdot \frac{1}{\sqrt{1-x^2}}}{1 - 3x^2} \] ### Step 7: Evaluate the new limit Now substituting \( x = 0 \): - The numerator approaches \( \frac{\pi}{2} \cdot 1 - 0 \cdot 1 = \frac{\pi}{2} \) - The denominator approaches \( 1 \) Thus, the limit is: \[ \frac{\frac{\pi}{2}}{1} = \frac{\pi}{2} \] ### Final Answer: The limit is \[ \frac{\pi}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0)(cos 2x-1)/(cosx-1)

lim_(xrarr0)(cos (sinx)-1)/(x^2)=

lim_(xrarr0)(4^x-1)/(3^x-1) equals

lim_(xrarr0)""(sin|x|)/(x)

lim_(xrarr0) (sin 3x)/x

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

lim_(xrarr0) (3sqrt(1+x-1))/(x)

lim_(xrarr0)(sin(x)/(4))/(x)

lim_(xrarr0)((x-1+cosx)/(x))^(1//x)

lim_(xrarr0) (sin 3 x)/(2x)