Home
Class 12
MATHS
tan^-1(x+1)+cot^-1(1/(x-1))=tan^-1(8/31)...

`tan^-1(x+1)+cot^-1(1/(x-1))=tan^-1(8/31)` then sum of all the values x satisfying

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}(x+1) + \cot^{-1}\left(\frac{1}{x-1}\right) = \tan^{-1}\left(\frac{8}{31}\right) \), we can follow these steps: ### Step 1: Rewrite the cotangent inverse Recall that \( \cot^{-1}(y) = \frac{\pi}{2} - \tan^{-1}(y) \). Therefore, we can rewrite the equation as: \[ \tan^{-1}(x+1) + \left(\frac{\pi}{2} - \tan^{-1}(x-1)\right) = \tan^{-1}\left(\frac{8}{31}\right) \] This simplifies to: \[ \tan^{-1}(x+1) - \tan^{-1}(x-1) + \frac{\pi}{2} = \tan^{-1}\left(\frac{8}{31}\right) \] ### Step 2: Isolate the arctangent terms Rearranging gives us: \[ \tan^{-1}(x+1) - \tan^{-1}(x-1) = \tan^{-1}\left(\frac{8}{31}\right) - \frac{\pi}{2} \] Using the identity \( \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a-b}{1+ab}\right) \), we can express the left side as: \[ \tan^{-1}\left(\frac{(x+1)-(x-1)}{1+(x+1)(x-1)}\right) = \tan^{-1}\left(\frac{2}{1 + (x^2 - 1)}\right) \] This simplifies to: \[ \tan^{-1}\left(\frac{2}{x^2}\right) \] ### Step 3: Set the arctangents equal Now we have: \[ \tan^{-1}\left(\frac{2}{x^2}\right) = \tan^{-1}\left(\frac{8}{31}\right) \] Since the tangent function is one-to-one, we can equate the arguments: \[ \frac{2}{x^2} = \frac{8}{31} \] ### Step 4: Cross-multiply and solve for \( x^2 \) Cross-multiplying gives: \[ 2 \cdot 31 = 8 \cdot x^2 \] This simplifies to: \[ 62 = 8x^2 \quad \Rightarrow \quad x^2 = \frac{62}{8} = \frac{31}{4} \] ### Step 5: Solve for \( x \) Taking the square root gives: \[ x = \pm \sqrt{\frac{31}{4}} = \pm \frac{\sqrt{31}}{2} \] ### Step 6: Verify the solutions We need to check if both values satisfy the original equation. 1. For \( x = \frac{\sqrt{31}}{2} \): - \( x + 1 > 0 \) and \( x - 1 > 0 \) (valid). 2. For \( x = -\frac{\sqrt{31}}{2} \): - \( x + 1 < 0 \) (invalid as it leads to undefined behavior in the arctangent). Thus, the only valid solution is \( x = \frac{\sqrt{31}}{2} \). ### Step 7: Calculate the sum of all valid \( x \) Since the only valid solution is \( x = \frac{\sqrt{31}}{2} \), the sum of all values of \( x \) satisfying the equation is: \[ \text{Sum} = \frac{\sqrt{31}}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)(x+1)+ tan^(-1)(x-1)= tan^(-1)(8/31) ,then x is equal to

cot^(-1)x=tan^(-1)x then

tan^(-1)(cot x)+cot^(-1)(tan x)

Let |[tan^(-1)x,tan^(-1)2x,tan^(-1)3x],[tan^(-1)3x,tan^(-1)x,tan^(-1)2x],[tan^(-1)2x,tan^(-1)3x,tan^(-1)x]|=0 , then the number of values of x satisfying the equation is 1 (b) 2 (c) 3 (d) 4

If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

If tan^(-1)3+ tan^(-1)x = tan^(-1)8 , then: x=

If tan^(-1)(1)+tan^(-1)(x)=0 then the value of "x" is