Home
Class 12
MATHS
If vecrxxveca=vecrxxvecb , veca=2hati-3h...

If `vecrxxveca=vecrxxvecb , veca=2hati-3hatj+4hatk, vecb=7hati+hatj-6hatk,vecc=hati+2hatj+hatk , and vecr*vecc=-3` then find `vecr*veca`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the dot product \( \vec{r} \cdot \vec{a} \) given the conditions provided. Let's break it down step by step. ### Step 1: Understand the Given Information We have: - \( \vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k} \) - \( \vec{b} = 7\hat{i} + \hat{j} - 6\hat{k} \) - \( \vec{c} = \hat{i} + 2\hat{j} + \hat{k} \) - \( \vec{r} \cdot \vec{c} = -3 \) - \( \vec{r} \times \vec{a} = \vec{r} \times \vec{b} \) ### Step 2: Use the Cross Product Condition From the condition \( \vec{r} \times \vec{a} = \vec{r} \times \vec{b} \), we can rearrange it as: \[ \vec{r} \times \vec{a} - \vec{r} \times \vec{b} = \vec{0} \] This implies: \[ \vec{r} \times (\vec{a} - \vec{b}) = \vec{0} \] This means that \( \vec{r} \) is parallel to \( \vec{a} - \vec{b} \). ### Step 3: Calculate \( \vec{a} - \vec{b} \) Now, we compute \( \vec{a} - \vec{b} \): \[ \vec{a} - \vec{b} = (2\hat{i} - 3\hat{j} + 4\hat{k}) - (7\hat{i} + \hat{j} - 6\hat{k}) \] \[ = (2 - 7)\hat{i} + (-3 - 1)\hat{j} + (4 + 6)\hat{k} \] \[ = -5\hat{i} - 4\hat{j} + 10\hat{k} \] ### Step 4: Express \( \vec{r} \) Since \( \vec{r} \) is parallel to \( \vec{a} - \vec{b} \), we can write: \[ \vec{r} = \lambda (-5\hat{i} - 4\hat{j} + 10\hat{k}) \] for some scalar \( \lambda \). ### Step 5: Use the Dot Product with \( \vec{c} \) Now, we use the condition \( \vec{r} \cdot \vec{c} = -3 \): \[ \vec{r} \cdot \vec{c} = \lambda (-5\hat{i} - 4\hat{j} + 10\hat{k}) \cdot (\hat{i} + 2\hat{j} + \hat{k}) \] Calculating the dot product: \[ = \lambda \left[ -5(1) + (-4)(2) + 10(1) \right] \] \[ = \lambda \left[ -5 - 8 + 10 \right] \] \[ = \lambda (-3) \] Setting this equal to -3: \[ \lambda (-3) = -3 \implies \lambda = 1 \] ### Step 6: Find \( \vec{r} \) Thus, we have: \[ \vec{r} = -5\hat{i} - 4\hat{j} + 10\hat{k} \] ### Step 7: Calculate \( \vec{r} \cdot \vec{a} \) Now we can find \( \vec{r} \cdot \vec{a} \): \[ \vec{r} \cdot \vec{a} = (-5\hat{i} - 4\hat{j} + 10\hat{k}) \cdot (2\hat{i} - 3\hat{j} + 4\hat{k}) \] Calculating the dot product: \[ = (-5)(2) + (-4)(-3) + (10)(4) \] \[ = -10 + 12 + 40 \] \[ = 42 \] ### Final Answer Thus, the value of \( \vec{r} \cdot \vec{a} \) is \( \boxed{42} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

Given veca=xhati+yhatj+2hatk,vecb=hati-hatj+hatk , vecc=hati+2hatj, veca botvecb,veca.vecc=4 then

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3cevc .

The three vectors vecA=3hati-2hatj+hatk, vecB=hati-3hatj+5hatk and vecC=2hati+hatj-4hatk form

Let vec a=hati+2hatj-hatk , vec b=hati-hatj , vec c=hati-hatj-hatk ,and vecrxxveca = vecc xx veca , vecr*vecb=0 . Find vecr*veca

If vecA 2 hati +hatj -hatk, vecB=hati +2hatj +3hatk, vecC=6hati -2hatj-6hatk angle between (vecA+vecB) and vecC will be

veca=hati+hatj+hatk , vecb=hati-hatk , veca xx vecc = vecb , veca*vecc=3 then Find [(veca,vecb,vecc)]