Home
Class 12
MATHS
Let A=[(2,3),(0,-1)] , the value of det(...

Let `A=[(2,3),(0,-1)]` , the value of `det(A^4)-det(A^10-adj(2A)^10))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the expression \( \text{det}(A^4) - \text{det}(A^{10} - \text{adj}(2A)^{10}) \). ### Step 1: Calculate the determinant of matrix \( A \) Given: \[ A = \begin{pmatrix} 2 & 3 \\ 0 & -1 \end{pmatrix} \] The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated as: \[ \text{det}(A) = ad - bc \] For matrix \( A \): \[ \text{det}(A) = (2)(-1) - (3)(0) = -2 - 0 = -2 \] ### Step 2: Calculate \( \text{det}(A^4) \) Using the property of determinants, \( \text{det}(A^n) = (\text{det}(A))^n \): \[ \text{det}(A^4) = (\text{det}(A))^4 = (-2)^4 = 16 \] ### Step 3: Calculate \( \text{det}(A^{10}) \) Similarly: \[ \text{det}(A^{10}) = (\text{det}(A))^{10} = (-2)^{10} = 1024 \] ### Step 4: Calculate \( 2A \) Now, we calculate \( 2A \): \[ 2A = 2 \cdot \begin{pmatrix} 2 & 3 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 0 & -2 \end{pmatrix} \] ### Step 5: Calculate \( \text{adj}(2A) \) The adjugate of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For \( 2A \): \[ \text{adj}(2A) = \begin{pmatrix} -2 & -6 \\ 0 & 4 \end{pmatrix} \] ### Step 6: Calculate \( \text{det}(\text{adj}(2A)) \) Using the property \( \text{det}(\text{adj}(A)) = (\text{det}(A))^{n-1} \) for a \( n \times n \) matrix: \[ \text{det}(2A) = 2^2 \cdot \text{det}(A) = 4 \cdot (-2) = -8 \] \[ \text{det}(\text{adj}(2A)) = (-8)^{1} = -8 \] ### Step 7: Calculate \( \text{det}(\text{adj}(2A)^{10}) \) Using the property of determinants: \[ \text{det}(\text{adj}(2A)^{10}) = (\text{det}(\text{adj}(2A)))^{10} = (-8)^{10} = 1073741824 \] ### Step 8: Calculate \( \text{det}(A^{10} - \text{adj}(2A)^{10}) \) Since \( \text{adj}(2A)^{10} \) is a scalar multiple of the identity matrix (as it is a \( 2 \times 2 \) matrix raised to a power), we can express it as: \[ \text{det}(A^{10} - \text{adj}(2A)^{10}) = \text{det}(1024 - 1073741824) \] This simplifies to: \[ \text{det}(-1073740800) = (-1073740800)^2 = 1152921504606846976000 \] ### Step 9: Final Calculation Now, we can substitute back into our original expression: \[ \text{det}(A^4) - \text{det}(A^{10} - \text{adj}(2A)^{10}) = 16 - 1152921504606846976000 \] This results in: \[ \text{det}(A^4) - \text{det}(A^{10} - \text{adj}(2A)^{10}) = -1152921504606846975984 \] ### Final Answer Thus, the final value is: \[ \text{det}(A^4) - \text{det}(A^{10} - \text{adj}(2A)^{10}) = -1152921504606846975984 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [{:(2,3),(0,-1):}] , then the value of det (A^(4)) | det ( A^(10) - Adj( 2A))^(10)) is equal to "_______________" .

" Let "A=([201,2011],[1,10])" ,then the value of "(det(A^(5)-201A^(4)))/(-2011)" is "

Let B be a skew symmetric matrix of order 3times3 with real entries. Given I-B and I+B are non-singular matrices. If A=(I+B)(I-B)^(-1), where det (A)>0 ,then find the value of det(2A)-det(adj(A)) [Note: det(P) denotes determinant of square matrix P and det(adj (P)) denotes determinant of adjoint of square matrix P respectively.]

A is square matrix of order 2 such that A A^(T)= I and B is non-singular square matrix of order 2 and period 3 . If det (A)!=det(B), then value of sum_(r=0)^(20)det(adj(A^(r)B^(2r+1))) is (where A^(T) denotes the transpose of matrix A )

Let A be a matrix of order 3 xx 3 such that det ( A)= 2 , B = 2A^(-1) and C = (( adjA))/(root(3)(16)) ,then the value of det(A^(3) B^(2) C^(3)) is

Let A be a non singular matrix such that A^(-1)=[(1, 1, 1),( 4, 6, 8 ),( 100, 100, 99 )] .Then the value of det (adj2A)+det(2A)=

Let A,B be non- singular matrices of order 3 such that det(A)=5 and A^(-1)B^(2)+AB=0 then the value of det(A^(6)-2A^(4)B+A^(2)B^(2)) is equal to 10^(k) where k is equal to

If A,B and C are square matrices of order n and det (A)=2, det(B)=3 and det ©=5, then find the value of 10det (A^(3)B^(2)C^(-1)).

If A,B and C are n xx n matrices and det(A)=2,det(B)=3 and det(C)=5 then the value of the det (A^(2)BC^(-1)) is equal to