Home
Class 12
MATHS
A=[(a,b),(c,d)] , B=[(alpha),(beta)] suc...

`A=[(a,b),(c,d)] , B=[(alpha),(beta)]` such that `AB=B` and `a+d=2021` , B is a non-zero matrix. find `ad-bc`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we have the matrices \( A \) and \( B \) defined as follows: \[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad B = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \] We know that \( AB = B \) and \( a + d = 2021 \). We need to find \( ad - bc \). ### Step 1: Set up the equation from \( AB = B \) From the equation \( AB = B \), we can rewrite it as: \[ AB - B = 0 \] This can be factored as: \[ (A - I)B = 0 \] where \( I \) is the identity matrix. ### Step 2: Analyze the implications of \( (A - I)B = 0 \) Since \( B \) is a non-zero matrix, the only way for the product \( (A - I)B \) to be zero is if the determinant of \( (A - I) \) is zero. Thus, we have: \[ \text{det}(A - I) = 0 \] ### Step 3: Calculate \( A - I \) The identity matrix \( I \) for a 2x2 matrix is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] So, we compute \( A - I \): \[ A - I = \begin{pmatrix} a - 1 & b \\ c & d - 1 \end{pmatrix} \] ### Step 4: Find the determinant of \( A - I \) The determinant of \( A - I \) is given by: \[ \text{det}(A - I) = (a - 1)(d - 1) - bc \] Setting this equal to zero gives: \[ (a - 1)(d - 1) - bc = 0 \] ### Step 5: Expand the determinant equation Expanding the determinant, we have: \[ ad - a - d + 1 - bc = 0 \] Rearranging this, we find: \[ ad - bc = a + d - 1 \] ### Step 6: Substitute the value of \( a + d \) We know from the problem that \( a + d = 2021 \). Substituting this into our equation gives: \[ ad - bc = 2021 - 1 = 2020 \] ### Conclusion Thus, the value of \( ad - bc \) is: \[ \boxed{2020} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[(a,b),(c, d)]and B=[(alpha), (beta)] ne [(0), (0)] such that AB = B and a+d=2021 , then the value of ad-bc is equal to ___________ .

Let A=[[a,bc,d]] and B=([p,q])!=[[0,0]] Given that AB,=B and a+d=2. Then the value of (ad-bc) is

If A=[3 5],B=[7 3], then find a non-zero matrix C such that AC=BC.

If A=[3 5] , B=[7 3] , then find a non-zero matrix C such that A C=B C .

If A=[(a,b),(b,a)] and A^2=[(alpha, beta),(beta, alpha)] then (A) alpha=a^2+b^2, beta=ab (B) alpha=a^2+b^2, beta=2ab (C) alpha=a^2+b^2, beta=a^2-b^2 (D) alpha=2ab, beta=a^2+b^2

If A=[{:(0," "c,-b),(-c," "0," "a),(b,-a," "0):}]" and "B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}] , show that AB is a zero matrix.

The determinant Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha + c,c alpha + d,a a^(3) - c alpha)| is equal to zero, if

If a +b+c = alphad, b+c+d=beta a and a, b, c are non-coplanar, then the sum of a +b+c+d =