Home
Class 12
MATHS
Find lim(thetararr0) (tan(pi*cos^2theta)...

Find `lim_(thetararr0) (tan(pi*cos^2theta))/(sin(2pisin^2theta))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{\theta \to 0} \frac{\tan(\pi \cos^2 \theta)}{\sin(2\pi \sin^2 \theta)} \), we will follow these steps: ### Step 1: Evaluate the limit directly First, we substitute \( \theta = 0 \): - \( \cos^2(0) = 1 \) so \( \tan(\pi \cos^2(0)) = \tan(\pi) = 0 \) - \( \sin^2(0) = 0 \) so \( \sin(2\pi \sin^2(0)) = \sin(0) = 0 \) This gives us the form \( \frac{0}{0} \), which is indeterminate. **Hint:** When you get a \( \frac{0}{0} \) form, you can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Since we have \( \frac{0}{0} \), we differentiate the numerator and the denominator with respect to \( \theta \). **Numerator:** \[ \frac{d}{d\theta}[\tan(\pi \cos^2 \theta)] = \sec^2(\pi \cos^2 \theta) \cdot \frac{d}{d\theta}[\pi \cos^2 \theta] \] Using the chain rule: \[ \frac{d}{d\theta}[\pi \cos^2 \theta] = \pi \cdot 2\cos \theta(-\sin \theta) = -2\pi \cos \theta \sin \theta \] Thus, the derivative of the numerator is: \[ \sec^2(\pi \cos^2 \theta) \cdot (-2\pi \cos \theta \sin \theta) \] **Denominator:** \[ \frac{d}{d\theta}[\sin(2\pi \sin^2 \theta)] = \cos(2\pi \sin^2 \theta) \cdot \frac{d}{d\theta}[2\pi \sin^2 \theta] \] Using the chain rule: \[ \frac{d}{d\theta}[2\pi \sin^2 \theta] = 2\pi \cdot 2\sin \theta \cos \theta = 4\pi \sin \theta \cos \theta \] Thus, the derivative of the denominator is: \[ \cos(2\pi \sin^2 \theta) \cdot (4\pi \sin \theta \cos \theta) \] ### Step 3: Rewrite the limit Now, we can rewrite the limit using these derivatives: \[ \lim_{\theta \to 0} \frac{-2\pi \cos \theta \sin \theta \sec^2(\pi \cos^2 \theta)}{4\pi \sin \theta \cos \theta \cos(2\pi \sin^2 \theta)} \] ### Step 4: Simplify the expression Notice that \( \sin \theta \) and \( \cos \theta \) cancel out: \[ \lim_{\theta \to 0} \frac{-2 \sec^2(\pi \cos^2 \theta)}{4 \cos(2\pi \sin^2 \theta)} = \lim_{\theta \to 0} \frac{-\sec^2(\pi \cos^2 \theta)}{2 \cos(2\pi \sin^2 \theta)} \] ### Step 5: Evaluate the limit As \( \theta \to 0 \): - \( \sec^2(\pi \cos^2(0)) = \sec^2(\pi) = \sec^2(1) \) - \( \cos(2\pi \sin^2(0)) = \cos(0) = 1 \) Thus, the limit becomes: \[ \frac{-\sec^2(\pi)}{2 \cdot 1} = \frac{-1}{2} \] ### Final Answer Therefore, the limit is: \[ \lim_{\theta \to 0} \frac{\tan(\pi \cos^2 \theta)}{\sin(2\pi \sin^2 \theta)} = -\frac{1}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Tha value of the limit lim_(theta to 0) (tan(pi cos^(2)theta))/(sin (2pi sin^(2)theta)) is equal to :

lim_(theta rarr(pi)/(6))(4cos^(2)theta-3)/(2sin theta-1)

lim_(theta rarr0)(1-cos theta)/(sin^(2)2 theta)

lim_(theta rarr(pi)/(4))(1-tan theta)/(1-sqrt(2)sin theta)

Evaluate the following limit: (lim)_(theta rarr0)(sin3 theta)/(tan2 theta)

lim_(theta rarr(pi)/(2))(sec theta-tan theta)/(pi-2 theta)

lim_(theta rarr pi/2)(sec theta-tan theta)/(pi-2 theta)

The number of solutions to sin(pisin^2(theta))+sin(picos^2(theta))=2cos(pi/2cos(theta)) satisfying 0lethetale2pi is

Let l=lim_(theta rarr0)(sin^(3)theta -tan^(3)theta)/(theta^(5)) and m=lim_(theta rarr(pi)/(4))(((sin theta+cos theta)^(3)-2sqrt(2))/(1-sin2 theta)) .Find the value of [l^(2)+m^(2)] (where [x] denotes largest integer less than or equal to