Home
Class 12
MATHS
lim(nrarroo)([r]+[2r]+ . . . + [nr])/n^2...

`lim_(nrarroo)([r]+[2r]+ . . . + [nr])/n^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \frac{[r] + [2r] + \ldots + [nr]}{n^2} \), we will break it down step by step. ### Step 1: Understanding the Greatest Integer Function The greatest integer function, denoted as \([x]\), represents the largest integer less than or equal to \(x\). We can express \([kr]\) as: \[ [kr] = kr - \{kr\} \] where \(\{kr\}\) is the fractional part of \(kr\). ### Step 2: Rewrite the Sum We can rewrite the sum in the limit: \[ \sum_{k=1}^{n} [kr] = \sum_{k=1}^{n} (kr - \{kr\}) = \sum_{k=1}^{n} kr - \sum_{k=1}^{n} \{kr\} \] This gives us: \[ \sum_{k=1}^{n} [kr] = r \sum_{k=1}^{n} k - \sum_{k=1}^{n} \{kr\} \] ### Step 3: Calculate the First Sum The sum of the first \(n\) natural numbers is given by: \[ \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \] Thus, we have: \[ \sum_{k=1}^{n} [kr] = r \cdot \frac{n(n+1)}{2} - \sum_{k=1}^{n} \{kr\} \] ### Step 4: Analyze the Second Sum The fractional part \(\{kr\}\) is bounded between 0 and 1. Therefore, the sum \(\sum_{k=1}^{n} \{kr\}\) is at most \(n\): \[ 0 \leq \sum_{k=1}^{n} \{kr\} \leq n \] ### Step 5: Substitute Back into the Limit Now substituting back into our limit: \[ \lim_{n \to \infty} \frac{[r] + [2r] + \ldots + [nr]}{n^2} = \lim_{n \to \infty} \frac{r \cdot \frac{n(n+1)}{2} - \sum_{k=1}^{n} \{kr\}}{n^2} \] This simplifies to: \[ \lim_{n \to \infty} \left( \frac{r(n^2 + n)}{2n^2} - \frac{\sum_{k=1}^{n} \{kr\}}{n^2} \right) \] Breaking this down further: \[ = \lim_{n \to \infty} \left( \frac{r}{2} \left(1 + \frac{1}{n}\right) - \frac{\sum_{k=1}^{n} \{kr\}}{n^2} \right) \] ### Step 6: Evaluate the Limit As \(n\) approaches infinity, \(\frac{1}{n}\) approaches 0, and \(\frac{\sum_{k=1}^{n} \{kr\}}{n^2}\) approaches 0 since \(\sum_{k=1}^{n} \{kr\}\) is bounded by \(n\): \[ \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \{kr\}}{n^2} = 0 \] Thus, we have: \[ \lim_{n \to \infty} \left( \frac{r}{2} \cdot 1 - 0 \right) = \frac{r}{2} \] ### Final Answer The final result is: \[ \lim_{n \to \infty} \frac{[r] + [2r] + \ldots + [nr]}{n^2} = \frac{r}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n to oo) ([r]+[2r] +….+[nr])/(n^(2)) , where r is a non-zero real number and [r] denotes the greatest integer less than or equal to r, is equal to :

lim_(nrarroo)(1+((1+1/2+1/3+. . . +1/n)/n^2))^n

Evaluate lim_(nrarroo) [(1^6 + 2^6 + 3^6…..+n^6)/n^7]

value of lim_ (n rarr oo) sum_ (r = 1) ^ (n) tan ^ (- 1) ((1) / (2r ^ (2))) is

lim_ (n rarr oo) sum_ (n = 1) ^ (n) tan ^ (- 1) ((2r + 1) / (r ^ (4) + 2r ^ (3) + r ^ (2) +1) ) is

The value of I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r) is equal to

The value of lim_(nrarroo)Sigma_(r=1)^(n)((2r)/(n^(2)))e^((r^(2))/(n^(2))) is equal to

lim_ (n rarr oo) nC_ (r) ((m) / (n)) ^ (r) (1- (m) / (n)) ^ (nr) =

If lim_(nrarroo)Sigma_(r=1)^(2n)(3r^(2))/(n^(3))e^((r^(3))/(n^(3)))=e^(a)-e^(b) , then a+b is equal to