Home
Class 12
MATHS
f(x)=e^-xsinx , F(x)=int0^xf(t)dt ,.Find...

`f(x)=e^-xsinx , F(x)=int_0^xf(t)dt ,`.Find `int_0^1e^x(F'(x)+f(x))dx ` lies in interval

A

`(330/360,331/360)`

B

`(327/360,329/360)`

C

`(335/360,336/360)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ I = \int_0^1 e^x (F'(x) + f(x)) \, dx \] where \( f(x) = e^{-x} \sin x \) and \( F(x) = \int_0^x f(t) \, dt \). ### Step 1: Find \( F'(x) \) By the Fundamental Theorem of Calculus, we know that: \[ F'(x) = f(x) \] Thus, we have: \[ F'(x) = e^{-x} \sin x \] ### Step 2: Substitute \( F'(x) \) into the integral Now we can substitute \( F'(x) \) into the integral \( I \): \[ I = \int_0^1 e^x (f(x) + f(x)) \, dx = \int_0^1 e^x (2f(x)) \, dx \] This simplifies to: \[ I = 2 \int_0^1 e^x f(x) \, dx \] ### Step 3: Substitute \( f(x) \) Now substitute \( f(x) \): \[ I = 2 \int_0^1 e^x (e^{-x} \sin x) \, dx = 2 \int_0^1 \sin x \, dx \] ### Step 4: Evaluate the integral Now we need to evaluate the integral \( \int_0^1 \sin x \, dx \): \[ \int \sin x \, dx = -\cos x + C \] Thus, \[ \int_0^1 \sin x \, dx = [-\cos x]_0^1 = -\cos(1) - (-\cos(0)) = -\cos(1) + 1 \] So, \[ \int_0^1 \sin x \, dx = 1 - \cos(1) \] ### Step 5: Substitute back into \( I \) Substituting this back into our expression for \( I \): \[ I = 2(1 - \cos(1)) = 2 - 2\cos(1) \] ### Step 6: Determine the interval Now we need to find the interval in which \( I \) lies. We know that \( \cos(1) \) is a positive number less than 1. Therefore, \( 2\cos(1) \) is a positive number less than 2, and thus: \[ 0 < 2 - 2\cos(1) < 2 \] To find a more precise interval, we can use the approximation \( \cos(1) \approx 0.5403 \): \[ I \approx 2 - 2(0.5403) = 2 - 1.0806 = 0.9194 \] We can also calculate the bounds: - When \( \cos(1) = 1 \), \( I = 0 \) - When \( \cos(1) = 0 \), \( I = 2 \) Thus, the value of \( I \) lies between \( 0 \) and \( 2 \). ### Final Result The integral \( I \) lies in the interval \( (0, 2) \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R to R be defined as f(x)=e^(-x)sinx . If F:[0, 1] to R is a differentiable function such that F(x)=int_(0)^(x)f(t)dt , then the vlaue of int_(0)^(1)(F'(x)+f(x))e^(x)dx lies in the interval

f(x)=x^(3)+1-2x int_(0)^(x)g(t)dt and g(x)=x-int_(0)^(1)f(t)dt. Then yhe value of int_(0)^(1)f(t)dt lies in the interval

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

If f(-x)+f(x)=0 then int_(a)^(x)f(t)dt is

If f(x)=int_0^x (sint)/(t)dt,xgt0, then

int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is

Suppose f(x) and g(x) are two continuous functions defined for 0<=x<=1. Given,f(x)=int_(0)^(1)e^(x+1)*f(t)dt and g(x)=int_(0)^(1)e^(x+1)*g(t)dt+x The value of f(1) equals

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval