Home
Class 12
MATHS
1.If x=5t-t^(3) ,y=t^(2)+4t find (dy)/(...

1.If `x=5t-t^(3) ,y=t^(2)+4t` find `(dy)/(dx)` at `t=1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(2),y=t^(3) find (dy)/(dx)

If x=t^(3) and y=t^(4) then (dy)/(dx) at "t=-1" is

If x=tan^(-1)t, and y=t^(3), find (dy)/(dx)

If " "x=t^(2),y=t^(3) ," then "(dy)/(dx)" at "t=-1" is "

If x=te^(t) and y=1+log t, find (dy)/(dx)

If x=2t-3t^(2) and y=6t^(3) then (dy)/(dx) at point (-1,6) is

If x=t log t ,y =t^(t) ,then (dy)/(dx)=

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2)), then find (dy)/(dx) at t=2

If x=(t+(1)/(t))^(a),y=a^(t+(1)/(t)), find (dy)/(dx)

If x=ct and y= (c )/(t) , find (dy)/(dx) at t=2 is