Home
Class 12
MATHS
Show that ""^(10)C2+^(11)C2+^(12)C2+^(13...

Show that `""^(10)C_2+^(11)C_2+^(12)C_2+^(13)C_2+...+^(20)C_2=^(21)C_3-^(10)C_3`.

Text Solution

Verified by Experts

The correct Answer is:
`""^(10)C_2+^(11)C_2+^(12)C_2+^(13)C_2+...+^(20)C_2=^(21)C_3-^(10)C_3`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ""^(10)C_(3)+""^(10)C_(6)=""^(11)C_(4)

Find the value of ""^(10)C_(5)+2. ""^(10)C_(4)+""^(10)C_(3) .

""^21C_0 + ""^21C_1 + ""^21C_2 + ……..+ ""^21C_10 =

2.C_0 + (2^2)/(2).C_1 + (2^3)/(3).C_2 + ……+(2^11)/(11).C_10 =

(""^(20)C_(1))/(""^(20)C_(0))+2.(""^(20)C_(2))/(""^(20)C_(1))+3.(""^(20)C_(3))/(""^(20)C_(2)) +…20.(""^(20)C_(20))/(""^(20)C_(19)) =210

Prove that 5.C_(0) +5^(2).(C_(1))/(2) +5^(3).(C_(2))/(3)+…+5^(n+1).(C_(n))/(n+1)=(6^(n+1)-1)/(n+1) Hence show that 5.C_(0) +(5^(2))/(2).C_(1)+(5^(3))/(3).C_(2)+….+(5^(11))/(11).C_(10)=(6^(11)-1)/(11)

(C_1)/(C_0)+2. (C_2)/(C_1)+3. (C_3)/(C_2)+….+n.(C_n)/(C_(n-1))=

Show that (2^(2) *C_(0) )/(1*2)+(2^(3)*C_(1))/(2*3)+(2^(4) *C_(2))/(3*4)+…+(2^(n+2)*C_(n))/((n+1)(n+2)) = (3^(n+2) - 2n-5)/((n+1)(n+2)) Hence deduce that (C_(0))/(1.2) -(C_(1))/(2.3) +(C_(2))/(3.4) -…=(1)/(n+2)