Home
Class 12
MATHS
Prove that 3lerlen ""^(n-3)C(r)+3""^(n...

Prove that `3lerlen`
`""^(n-3)C_(r)+3""^(n-3)C_(r-1)+3""^(n-3)C_(r-2)+""^(n-3)C_(r-3)=""^(n)C_(r)`

Text Solution

Verified by Experts

The correct Answer is:
`""^nC_r`
Promotional Banner

Similar Questions

Explore conceptually related problems

""^(n) C_(r) + 4 . ""^(n) C_(r-1) + 6 . ""^(n) C_(r-2) + 4. ""^(n)C_(r-3) + ""^(n)C_(r-4) =

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

""^(n)C_(r)+4.""^(n)C_(r-1)+6.""^(n)C_(r-2)+4.""^(n)C_(r-3)+""^(n)C_(r-4) is equal to

""^((n+1))C_(3)-""^(n-1)C_(3) =

""^(n-2)C_(r)+2.""^(n-2)C_(r-1)+""^(n-2)C_(r-2) is equal to

Use the identity (1+x)^(m)(1+x)^(n)=(1+x)^(m+n) to prove Vandermonde's theorem, ""^(m)C_(r ) +""^(m)C_(r-1). ""^(n)C_( 1)+""^(m)C_(r -2) *""^(n)C_(2) +….+""^(n)C_(r )=""^((m+n))C_(r )

If ""^(n)C_(r) +""^(n) C_(r+1)= ""^((n+1)) C_(x) then x=

If ""^(n-1)C_(3)+""^(n-1)C_(4)gt""^(n)C_(3) , then

Prove that sum_(k=1)^(n-r ) ""^(n-k)C_(r )= ""^(n)C_( r+1) .