Home
Class 7
MATHS
,(a+b)^2 + (a-b)^2 = 2(a^2 + b^2) or (a+...

,`(a+b)^2 + (a-b)^2 = 2(a^2 + b^2) or (a+b)^2 - (a -b)^2= 4ab` or `ab = (frac(a+b)(2))^2 -(frac(a-b)(2))^2` to find the following.
Let's find `8xy(x^2+ y^2)` when `(x+y) = 5 and (x-y) = 1`

Promotional Banner

Topper's Solved these Questions

  • ADDITION, SUBSTRATION MULTIPLICATION & DIVISION OF INTEGERS

    JNAN PUBLICATION|Exercise EXAMPLE|78 Videos
  • ALGEBRAIC OPERATIONS

    JNAN PUBLICATION|Exercise EXAMPLE|98 Videos

Similar Questions

Explore conceptually related problems

Let's apply, (a+b)^2 +( a-b)^2 = 2(a^2 + b^2) or (a+b)^2-(a -b)^2 =4ab or ab = (frac(a+b)(2))^2 - (frac(a-b)(2))^2 to find the following. Let's find frac(x^2 + y^2)(2xy) when (x + y) = 9 and ( x - y) = 5

Let's apply, (a+b)^2 + (a-b)^2 = 2(a^2 + b^2) or (a+b)^2-(a -b)^2= 4ab or ab = (frac(a+b)(2))^2 - (frac(a-b)(2))^2 to find the following. Let's find st and (s^2 + t^2) when s + t = 12 & s - t = 8

Let's apply, (a+b)^2 + (a-b)^2 = 2(a^2 + b^2) or (a+b)^2-(a -b)^2 =4ab or ab = (frac(a+b)(2))^2 - (frac(a-b)(2))^2 to find the following. Let's express 8x^2 + 50y^2 as the sum of two squares.

Let's apply, (a+b)^2 + (a-b)^2 = 2(a^2 + b^2) or (a+b)^2-(a -b)^2 =4ab or ab = (frac(a+b)(2))^2 - (frac(a-b)(2))^2 to find the following Let's express x as the difference of two squares.

Let's apply, (a+b)^2 + (a-b)^2 = 2(a^2 + b^2) or (a+b)^2-(a -b)^2 =4ab or ab = (frac(a+b)(2))^2 - (frac(a-b)(2))^2 to find the following. Let's express 36 as the difference of two squares.

Let's apply, (a+b)^2 +( a-b)^2 = 2(a^2 + b^2) or (a+b)^2-(a -b)^2 =4ab or ab = (frac(a+b)(2))^2 - (frac(a-b)(2))^2 to find the following. Let's express 44 as the difference of two squres.

If x = a + frac(1)(a) and y = a - frac(1)(a) then find the value of x^4 +y^4 - 2x^2y^2

Let's multiply :- frac(2)(3)x^2y xx frac(3)(5)xy^2

If x= frac(a)(b) + frac(b)(a) and y = frac(a)(b) - frac(b)(a) then show that x^4+y^4 - 2x^2y^2 = 16

Let's simplify: frac(a)(a^2 + ab) - frac(b)((a+b)^2)

JNAN PUBLICATION-ALGEBRAIC FORMULA-EXAMPLE
  1. Let's express the following in perfect square and hence find the value...

    Text Solution

    |

  2. Let's apply,(a+b)^2 + (a-b)^2 = 2(a^2 + b^2) or (a+b)^2-(a -b)^2= 4ab ...

    Text Solution

    |

  3. ,(a+b)^2 + (a-b)^2 = 2(a^2 + b^2) or (a+b)^2 - (a -b)^2= 4ab or ab = ...

    Text Solution

    |

  4. Let's apply,(a+b)^2 +( a-b)^2 = 2(a^2 + b^2) or (a+b)^2-(a -b)^2 =4ab ...

    Text Solution

    |

  5. Let's apply,(a+b)^2 + (a-b)^2 = 2(a^2 + b^2) or (a+b)^2-(a -b)^2 =4ab ...

    Text Solution

    |

  6. Let's apply,(a+b)^2 +( a-b)^2 = 2(a^2 + b^2) or (a+b)^2-(a -b)^2 =4ab ...

    Text Solution

    |

  7. Let's apply,(a+b)^2 + (a-b)^2 = 2(a^2 + b^2) or (a+b)^2-(a -b)^2 =4ab...

    Text Solution

    |

  8. Let's apply,(a+b)^2 + (a-b)^2 = 2(a^2 + b^2) or (a+b)^2-(a -b)^2 =4abo...

    Text Solution

    |

  9. Using the identity (x+a)(x+b) = x^2 + (a+b)x + ab, let's find the prod...

    Text Solution

    |

  10. Using the identity (x+a)(x+b) = x^2 + (a+b)x + ab, let's find the prod...

    Text Solution

    |

  11. Using the identity (x+a)(x+b) = x^2 + (a+b)x + ab, let's find the prod...

    Text Solution

    |

  12. Using the identity (x+a)(x+b) = x^2 + (a+b)x + ab, let's find the prod...

    Text Solution

    |

  13. Using the identity (x+a)(x+b) = x^2 + (a+b)x + ab, let's find the prod...

    Text Solution

    |

  14. Using the identity (x+a)(x+b) = x^2 + (a+b)x + ab, let's find the prod...

    Text Solution

    |

  15. Using formula let's show that. (2x + 3y)^2 - (2x - 3y)^2 = 24xy

    Text Solution

    |

  16. Using formula let's show that. (a+2b)^2 + (a-2b)^2 = 2(a^2 + 4b^2)

    Text Solution

    |

  17. Using formula let's show that. (l + m)^2 = (l - m)^2 + 4lm

    Text Solution

    |

  18. Using formula let's show that. (2p-q)^2 = (2p+q)^2 - 8pq

    Text Solution

    |

  19. Using formula let's show that. (3m + 4n)^2 = (3m - 4n)^2 + 48mn

    Text Solution

    |

  20. Using formula let's show that. (6x + 7y)^2 - 84xy = 36x^2 + 49y^2

    Text Solution

    |