Home
Class 12
MATHS
f(x)=int(5x^8+7x^6)/(x^2+1+2x^7)^2dx , i...

`f(x)=int(5x^8+7x^6)/(x^2+1+2x^7)^2dx , if f(0)=0` then find `f(1)=1/k.` Then k is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ f(x) = \int \frac{5x^8 + 7x^6}{(x^2 + 1 + 2x^7)^2} \, dx \] with the condition that \( f(0) = 0 \) and find \( f(1) = \frac{1}{k} \), then determine the value of \( k \). ### Step 1: Simplify the Integral We start by simplifying the integrand. Notice that we can factor out \( x^7 \) from the denominator: \[ x^2 + 1 + 2x^7 = x^7 \left( \frac{1}{x^5} + \frac{1}{x^7} + 2 \right) \] Thus, the integral becomes: \[ f(x) = \int \frac{5x^8 + 7x^6}{x^{14} \left( \frac{1}{x^5} + \frac{1}{x^7} + 2 \right)^2} \, dx \] ### Step 2: Change of Variables Let \( t = \frac{1}{x^5} + \frac{1}{x^7} + 2 \). We differentiate \( t \): \[ dt = \left( -\frac{5}{x^6} - \frac{7}{x^8} \right) dx \] This gives us: \[ dx = -\frac{x^6 x^8}{5x^6 + 7x^8} dt = -\frac{x^2}{5 + 7/x^2} dt \] ### Step 3: Rewrite the Integral Now substituting back into the integral, we have: \[ f(x) = -\int \frac{1}{t^2} dt \] ### Step 4: Integrate The integral of \( -\frac{1}{t^2} \) is: \[ f(x) = \frac{1}{t} + C \] Substituting back for \( t \): \[ f(x) = \frac{1}{\frac{1}{x^5} + \frac{1}{x^7} + 2} + C \] ### Step 5: Evaluate \( f(0) \) To find \( C \), we use the condition \( f(0) = 0 \). As \( x \to 0 \): \[ \frac{1}{\frac{1}{0} + \frac{1}{0} + 2} \to \frac{1}{2} \] Thus, we have: \[ 0 = \frac{1}{2} + C \implies C = -\frac{1}{2} \] ### Step 6: Final Expression for \( f(x) \) Now we can express \( f(x) \): \[ f(x) = \frac{1}{\frac{1}{x^5} + \frac{1}{x^7} + 2} - \frac{1}{2} \] ### Step 7: Evaluate \( f(1) \) Now we evaluate \( f(1) \): \[ f(1) = \frac{1}{\frac{1}{1^5} + \frac{1}{1^7} + 2} - \frac{1}{2} = \frac{1}{1 + 1 + 2} - \frac{1}{2} = \frac{1}{4} - \frac{1}{2} = \frac{1}{4} - \frac{2}{4} = -\frac{1}{4} \] ### Step 8: Find \( k \) Given that \( f(1) = \frac{1}{k} \): \[ -\frac{1}{4} = \frac{1}{k} \implies k = -4 \] Thus, the value of \( k \) is: \[ \boxed{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int(5x^8+7x^6)/((x^2+1+2x^7)^2)dx, (xge0), f(0)=0 and f(1)=1/K , then the value of K is _______ .

If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0) , and f(0) = 0, then the value of f(1) is

If f(x)=int(3x^4-1)/(x^4+x+1)^2dx and f(0)=0 , then f(-1)= …

Let f(x)=int(1)/((1+x^(2))^(3//2))dx and f(0)=0 then f(1)=

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

Let f(x),=int(x^(2))/((1+x^(2))(1+sqrt(1+x^(2))))dx and f(0),=0 then f(1) is

If f(x)=int(3x^(2)+1)/((x^(2)-1)^(3))dx and f(0)=0, then the value of (2)/(f(2))| is

f(x)=(sin x-x cos x)/(x^(2)) if x!=0 and f(0)=0 then int_(0)^(1)f(x)dx is

If f'(x)=4x^3-3x^2+2x+k and f(0)=1, f(1)=4 find f(x)

If f(x)+int{f(x)}^(-2)dx=0 and f(1)=0 then f(x) is