Home
Class 12
MATHS
f(x)=sqrtx , g(x)=sqrt(1-x) find common ...

`f(x)=sqrtx , g(x)=sqrt(1-x)` find common domain of `f+g ,f-g , f/g , g/f`

A

`x in (0,1)`

B

`x in [0,1)`

C

`x in [0,1]`

D

`x in (0,1]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the common domain of the functions \( f+g \), \( f-g \), \( \frac{f}{g} \), and \( \frac{g}{f} \) where \( f(x) = \sqrt{x} \) and \( g(x) = \sqrt{1-x} \), we will analyze the domain of each function step by step. ### Step 1: Determine the domain of \( f(x) = \sqrt{x} \) The function \( f(x) = \sqrt{x} \) is defined when the expression inside the square root is non-negative: \[ x \geq 0 \] Thus, the domain of \( f \) is: \[ D_f = [0, \infty) \] ### Step 2: Determine the domain of \( g(x) = \sqrt{1-x} \) The function \( g(x) = \sqrt{1-x} \) is defined when the expression inside the square root is non-negative: \[ 1 - x \geq 0 \implies x \leq 1 \] Thus, the domain of \( g \) is: \[ D_g = (-\infty, 1] \] ### Step 3: Find the common domain for \( f+g \) The domain of \( f+g \) is the intersection of the domains of \( f \) and \( g \): \[ D_{f+g} = D_f \cap D_g = [0, \infty) \cap (-\infty, 1] = [0, 1] \] ### Step 4: Find the common domain for \( f-g \) Similarly, the domain of \( f-g \) is also the intersection of the domains of \( f \) and \( g \): \[ D_{f-g} = D_f \cap D_g = [0, \infty) \cap (-\infty, 1] = [0, 1] \] ### Step 5: Find the common domain for \( \frac{f}{g} \) For \( \frac{f}{g} \) to be defined, \( g \) must not be zero: \[ g(x) \neq 0 \implies \sqrt{1-x} \neq 0 \implies 1 - x \neq 0 \implies x \neq 1 \] Thus, the domain of \( \frac{f}{g} \) is: \[ D_{\frac{f}{g}} = D_f \cap D_g \cap \{ x \neq 1 \} = [0, \infty) \cap (-\infty, 1] \cap \{ x \neq 1 \} = [0, 1) \] ### Step 6: Find the common domain for \( \frac{g}{f} \) For \( \frac{g}{f} \) to be defined, \( f \) must not be zero: \[ f(x) \neq 0 \implies \sqrt{x} \neq 0 \implies x \neq 0 \] Thus, the domain of \( \frac{g}{f} \) is: \[ D_{\frac{g}{f}} = D_f \cap D_g \cap \{ x \neq 0 \} = [0, \infty) \cap (-\infty, 1] \cap \{ x \neq 0 \} = (0, 1] \] ### Step 7: Find the common domain of all functions Now we find the intersection of all the domains: \[ D = D_{f+g} \cap D_{f-g} \cap D_{\frac{f}{g}} \cap D_{\frac{g}{f}} = [0, 1] \cap [0, 1] \cap [0, 1) \cap (0, 1] \] This results in: \[ D = (0, 1) \] ### Final Answer The common domain of \( f+g \), \( f-g \), \( \frac{f}{g} \), and \( \frac{g}{f} \) is: \[ (0, 1) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=1/x , g(x)=sqrtx find gof(x)

If the functions are defined as f(x)=sqrtx and g(x) = sqrt(1-x) , then what is the common domain of the following functions : f+g, f//g, g//f, f-g " where " (fpm g)(x)=f(x) pm g(x),(f//g)(x)=(f(x))/(g(x))

If f(x)=sqrt(2-x) and g(x)=sqrt(1-2x) ,then the domain of f[g(x)] is:

Let f and g be two functions defined by: f(x) = sqrt(x-1) and g(x) = sqrt(4-x^(2)) Find (i) f+g (ii) g + f (iii) f-g (iv) g-f (v) fg (vi) gf (vii) (f)/(g) (viii) (g)/(f)

Let f(x)=sqrt(6-x),g(x)=sqrt(x-2) . Find f+g,f-g,f.g and f/g.

If f and g are functions defined by : f(x) =sqrt(x - 1), g(x) = (1)/(x) , then describe the following : (i) f + g (ii) f - g (iii) fg (iv) (f)/(g) .

let f(x)=sqrt(x) and g(x)=x be function defined over the set of non negative real numbers. find (f+g)(x),(f-g)(x),(fg)(x) and (f/g)(x)

Let f and g be real functions, defined by f(x)=sqrt(x-1)andg(x)=sqrt(x+1) . Find (i) (f+g)(x) (ii) (f-g)(x) (iii) (fg)(x) (iv) ((f)/(g))(x) .

If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to

If f(x) = sqrt(x ^(2) - 5x + 4) & g(x) = x + 3 , then find the domain of (f)/(g) (x) .