Home
Class 12
MATHS
If (1+x+2x^2)^20 = a0+a1x+a2x^2+. . . +a...

If `(1+x+2x^2)^20 = a_0+a_1x+a_2x^2+. . . +a_40x^40` then `a_1+a_3+a_5+ . . . +a_37=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the coefficients of the odd powers of \( x \) in the expansion of \( (1 + x + 2x^2)^{20} \). Let's denote the expansion as: \[ (1 + x + 2x^2)^{20} = a_0 + a_1 x + a_2 x^2 + \ldots + a_{40} x^{40} \] We are interested in finding \( a_1 + a_3 + a_5 + \ldots + a_{37} \). ### Step 1: Calculate \( (1 + x + 2x^2)^{20} \) at \( x = 1 \) First, we evaluate the expression at \( x = 1 \): \[ (1 + 1 + 2 \cdot 1^2)^{20} = (1 + 1 + 2)^{20} = 4^{20} \] This gives us the sum of all coefficients: \[ a_0 + a_1 + a_2 + \ldots + a_{40} = 4^{20} \] ### Step 2: Calculate \( (1 + x + 2x^2)^{20} \) at \( x = -1 \) Next, we evaluate the expression at \( x = -1 \): \[ (1 - 1 + 2(-1)^2)^{20} = (1 - 1 + 2)^{20} = 2^{20} \] This gives us the sum of the coefficients with alternating signs: \[ a_0 - a_1 + a_2 - a_3 + \ldots + a_{40} = 2^{20} \] ### Step 3: Set up the equations We now have two equations: 1. \( a_0 + a_1 + a_2 + \ldots + a_{40} = 4^{20} \) 2. \( a_0 - a_1 + a_2 - a_3 + \ldots + a_{40} = 2^{20} \) ### Step 4: Add the two equations Adding these two equations will help us isolate the odd coefficients: \[ (a_0 + a_1 + a_2 + \ldots + a_{40}) + (a_0 - a_1 + a_2 - a_3 + \ldots + a_{40}) = 4^{20} + 2^{20} \] This simplifies to: \[ 2a_0 + 2a_2 + 2a_4 + \ldots + 2a_{40} = 4^{20} + 2^{20} \] ### Step 5: Subtract the second equation from the first Now, subtract the second equation from the first: \[ (a_0 + a_1 + a_2 + \ldots + a_{40}) - (a_0 - a_1 + a_2 - a_3 + \ldots + a_{40}) = 4^{20} - 2^{20} \] This simplifies to: \[ 2(a_1 + a_3 + a_5 + \ldots + a_{39}) = 4^{20} - 2^{20} \] ### Step 6: Solve for the sum of odd coefficients Now we can isolate the sum of the odd coefficients: \[ a_1 + a_3 + a_5 + \ldots + a_{39} = \frac{4^{20} - 2^{20}}{2} \] ### Step 7: Calculate the final result Now we compute \( 4^{20} \) and \( 2^{20} \): \[ 4^{20} = (2^2)^{20} = 2^{40} \] \[ 2^{20} = 2^{20} \] Thus, we have: \[ a_1 + a_3 + a_5 + \ldots + a_{39} = \frac{2^{40} - 2^{20}}{2} = 2^{39} - 2^{19} \] ### Final Answer The value of \( a_1 + a_3 + a_5 + \ldots + a_{37} \) is: \[ \boxed{2^{39} - 2^{19}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let (1+x+2x^2)^20=a_0+a_1x+a_2x^2+....+a_40x^40. " Then, "a_1+a_3+a_5.....+a_37 is equal to :

If (1+x+2x^2)^20=a_0 + a_1x+a_2x^2+....................+a_40x^40 then a_0+a_2+a_4+.............+a_38 is

If (1 + ax + b x^2)^4 = a_0 +a_1 x + a_2 x^2 +...+a_8 x^8 when a,b,a_0,a_1,a_2...,a_8 in R such that a_0+a_1+a_2 != 0 and |(a_0,a_1,a_2),(a_1,a_2,a_3),(a_2,a_0,a_1)| then the value of 5a/b (A) 6 (B) 8 (C) 10 (D) 12

If (1+x-x^2)^10/(1+x^2)=a_0+a_1x+a_2x^2+...+a_nx^n+… then find a_1+a_3+a_5+…

If (1+x)^n=a_0+a_1x+a_2x^2+...+a_nx^n then find : a_1-a_3+a_5-a_7+… .

If (1+x-x^2)^n/(1+x^2)=a_0+a_1x+a_2x^2+...+a_(2n)x^(2n) then find a_1+a_3+a_5+...+a_(2n-1)

If (1+2x+3x^2)^10=a_0+a_1x+a_2x^2+……..+a_20x^20 then (A) a_1=20 (B) a_2=210 (C) a_3=1500 (D) a_20=2^3.3^7

If (1+x-x^2)^10/(1+x^2)=a_0+a_1x+a_2x^2+...+a_nx^n+… then find a_0-a_1+a_2_... .

If (1+x)^n=a_0+a_1x+a_2x^2+...+a_nx^n then find : a_0+a_3+a_6+a_9+… .