Home
Class 12
MATHS
1/(3^2-1)+1/(5^2-1)+1/(7^2-1)+ . . . + 1...

`1/(3^2-1)+1/(5^2-1)+1/(7^2-1)+ . . . + 1/(201^2-1)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \[ S = \frac{1}{3^2 - 1} + \frac{1}{5^2 - 1} + \frac{1}{7^2 - 1} + \ldots + \frac{1}{201^2 - 1}, \] we first notice that the terms in the series involve the squares of odd numbers. The odd numbers can be expressed in the form \(2n + 1\), where \(n\) is a non-negative integer. The first odd number is 3, which corresponds to \(n = 1\), and the last odd number is 201, which corresponds to \(n = 100\). ### Step 1: Rewrite the series using summation notation The series can be rewritten as: \[ S = \sum_{n=1}^{100} \frac{1}{(2n + 1)^2 - 1}. \] ### Step 2: Simplify the denominator Next, we simplify the term in the denominator: \[ (2n + 1)^2 - 1 = 4n^2 + 4n + 1 - 1 = 4n^2 + 4n. \] Thus, we can rewrite the series as: \[ S = \sum_{n=1}^{100} \frac{1}{4n^2 + 4n} = \sum_{n=1}^{100} \frac{1}{4n(n + 1)}. \] ### Step 3: Factor out the constant We can factor out the constant \( \frac{1}{4} \): \[ S = \frac{1}{4} \sum_{n=1}^{100} \frac{1}{n(n + 1)}. \] ### Step 4: Use partial fractions Next, we can decompose \(\frac{1}{n(n + 1)}\) using partial fractions: \[ \frac{1}{n(n + 1)} = \frac{1}{n} - \frac{1}{n + 1}. \] ### Step 5: Rewrite the sum Now we can rewrite the sum: \[ S = \frac{1}{4} \sum_{n=1}^{100} \left( \frac{1}{n} - \frac{1}{n + 1} \right). \] ### Step 6: Recognize the telescoping series This is a telescoping series. When we expand it, we get: \[ S = \frac{1}{4} \left( \left( \frac{1}{1} - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \ldots + \left( \frac{1}{100} - \frac{1}{101} \right) \right). \] ### Step 7: Simplify the series Most terms will cancel out, leaving us with: \[ S = \frac{1}{4} \left( 1 - \frac{1}{101} \right) = \frac{1}{4} \left( \frac{101 - 1}{101} \right) = \frac{1}{4} \cdot \frac{100}{101} = \frac{25}{101}. \] ### Final Result Thus, the sum of the series is: \[ S = \frac{25}{101}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (1)/(3^(2)-1)+(1)/(5^(2)-1)+(1)/(7^(2)-1)+......+(1)/(35^(2)-1)

The sum up to 60 terms of 3/(1^2) + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2) + ……. is equal to

Value of 1+(1)/(1+2)+(1)/(1+2+3)+...+(1)/(1+2+3+...+n) is equal to

2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x + 1)^(5)) + …] is equal to ,

Evaluate : (1 - 1/3 )^2 times ( 1 - 1/4 )^2 times ( 1 - 1/5 )^2 ------- ( 1 - 1/n )^2 is equal to :