Home
Class 12
MATHS
Find the value of 3+1/(4+(1/(3+1/(4+1/(3...

Find the value of `3+1/(4+(1/(3+1/(4+1/(3+. . . oo)))))` is equal to

A

`4+sqrt3`

B

`1.5+sqrt3`

C

`2+sqrt3`

D

`3+2sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(3 + \frac{1}{4 + \frac{1}{3 + \frac{1}{4 + \frac{1}{3 + \ldots}}}}\), we can denote the entire expression as \(K\). Thus, we have: \[ K = 3 + \frac{1}{4 + \frac{1}{K}} \] Now, let's simplify this step by step. ### Step 1: Set up the equation We start with the equation we defined: \[ K = 3 + \frac{1}{4 + \frac{1}{K}} \] ### Step 2: Simplify the inner fraction We can rewrite the equation to isolate the inner fraction: \[ K - 3 = \frac{1}{4 + \frac{1}{K}} \] ### Step 3: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ (K - 3) \left(4 + \frac{1}{K}\right) = 1 \] Expanding this, we have: \[ (K - 3) \cdot 4 + \frac{K - 3}{K} = 1 \] This simplifies to: \[ 4K - 12 + \frac{K - 3}{K} = 1 \] ### Step 4: Multiply through by \(K\) to eliminate the fraction Multiplying through by \(K\) gives: \[ 4K^2 - 12K + K - 3 = K \] Rearranging this, we get: \[ 4K^2 - 12K - K - 3 = 0 \] This simplifies to: \[ 4K^2 - 13K - 3 = 0 \] ### Step 5: Apply the quadratic formula Using the quadratic formula \(K = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), where \(a = 4\), \(b = -13\), and \(c = -3\): \[ K = \frac{13 \pm \sqrt{(-13)^2 - 4 \cdot 4 \cdot (-3)}}{2 \cdot 4} \] Calculating the discriminant: \[ K = \frac{13 \pm \sqrt{169 + 48}}{8} \] \[ K = \frac{13 \pm \sqrt{217}}{8} \] ### Step 6: Evaluate the square root We can approximate \(\sqrt{217}\): \[ \sqrt{217} \approx 14.7 \] Thus, we have: \[ K \approx \frac{13 \pm 14.7}{8} \] Calculating the two possible values: 1. \(K_1 = \frac{27.7}{8} \approx 3.4625\) 2. \(K_2 = \frac{-1.7}{8} \approx -0.2125\) Since \(K\) must be positive, we take: \[ K \approx 3.4625 \] ### Final Result Thus, the value of the original expression is: \[ K \approx 3.4625 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of ( 3/4 )^(1/3)

Find the value of (1/4 )^-3

Find the value of 4^(3)+(1)/(4^3)

Find the value of p p-5(1)/(4)=3(1)/(3)

Find the value of (-4/3 ) - ( -1/3 )

Find the value of (1)/(4+((1)/(4+(1)/(4+)))... to oo

The value of 3+(1)/(3+(1)/(3+(1)/(3+...*oo)))

Find the value of   ( -4/3 - ( -1/3 ) ) is

Find the values of - (3^-1+4^-1)