Home
Class 12
MATHS
lim(xrarr0) (sin^-1x-tan^-1x)/(3x^3)=L t...

`lim_(xrarr0) (sin^-1x-tan^-1x)/(3x^3)=L` then find (6L+1)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( L = \lim_{x \to 0} \frac{\sin^{-1} x - \tan^{-1} x}{3x^3} \), we will follow these steps: ### Step 1: Evaluate the limit directly First, we substitute \( x = 0 \): \[ \sin^{-1}(0) = 0 \quad \text{and} \quad \tan^{-1}(0) = 0 \] Thus, we have: \[ L = \frac{0 - 0}{3 \cdot 0^3} = \frac{0}{0} \] This is an indeterminate form \( \frac{0}{0} \), so we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator: - The derivative of \( \sin^{-1} x \) is \( \frac{1}{\sqrt{1 - x^2}} \). - The derivative of \( \tan^{-1} x \) is \( \frac{1}{1 + x^2} \). - The derivative of \( 3x^3 \) is \( 9x^2 \). Now we apply L'Hôpital's Rule: \[ L = \lim_{x \to 0} \frac{\frac{1}{\sqrt{1 - x^2}} - \frac{1}{1 + x^2}}{9x^2} \] ### Step 3: Simplify the expression To simplify the expression in the numerator, we find a common denominator: \[ \frac{1}{\sqrt{1 - x^2}} - \frac{1}{1 + x^2} = \frac{(1 + x^2) - \sqrt{1 - x^2}}{\sqrt{1 - x^2}(1 + x^2)} \] Thus, we have: \[ L = \lim_{x \to 0} \frac{(1 + x^2) - \sqrt{1 - x^2}}{9x^2 \sqrt{1 - x^2}(1 + x^2)} \] ### Step 4: Substitute \( x = 0 \) again Substituting \( x = 0 \) gives: \[ 1 + 0^2 - \sqrt{1 - 0^2} = 1 - 1 = 0 \] This again results in \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 5: Differentiate again Differentiating the numerator: - The derivative of \( (1 + x^2) \) is \( 2x \). - The derivative of \( \sqrt{1 - x^2} \) using the chain rule is \( -\frac{x}{\sqrt{1 - x^2}} \). Thus, the derivative of the numerator is: \[ 2x + \frac{x}{\sqrt{1 - x^2}} \] The denominator's derivative is: \[ \frac{d}{dx}(9x^2 \sqrt{1 - x^2}(1 + x^2)) = 9(2x\sqrt{1 - x^2}(1 + x^2) + x^2 \cdot \frac{-x}{\sqrt{1 - x^2}}(1 + x^2) + 9x^2(1 + x^2)) \] ### Step 6: Evaluate the limit After simplifying, we can substitute \( x = 0 \) again: \[ L = \lim_{x \to 0} \frac{2 + \frac{1}{1}}{18} = \frac{3}{18} = \frac{1}{6} \] ### Step 7: Calculate \( 6L + 1 \) Now, we calculate \( 6L + 1 \): \[ 6L + 1 = 6 \cdot \frac{1}{6} + 1 = 1 + 1 = 2 \] ### Final Answer Thus, the final answer is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sin 3x)/x

If lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(3x^(3)) is equal to L ,then the value of (6L+1) is:

lim_(xrarr0) (3sqrt(1+x-1))/(x)

lim_(xrarr0) (sin 2x+x)/(x+tan 3x)=?

Evaluate: lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(x^(3))

lim_(xrarr0) (sqrt(1+x+x^(2))-1)/(x)

If lim_(xto0)(sin^(-1)x-tan^(-1)x)/(3x^3) is equal to L, then the value of (6L+1) is :

lim_(xrarr0)((1-e^x)sin x )/(x^2+x^3)=

lim_(xrarr0)(4^x-1)/(3^x-1) equals