Home
Class 12
MATHS
The values of x in (0, pi) satisfying th...

The values of x in `(0, pi)` satisfying the equation.
`|{:(1+"sin"^(2)x, "sin"^(2)x, "sin"^(2)x), ("cos"^(2)x, 1+"cos"^(2)x, "cos"^(2)x), (4"sin" 2x, 4"sin"2x, 1+4"sin" 2x):}| = 0`, are

Text Solution

Verified by Experts

The correct Answer is:
`(7pi)/2 and (11pi)/2`
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of x in (0,2 pi) satisfying the equation 1+sin2x=sin x+sin^(2)x is

The value of x in (0,(pi)/(2)) satisfying the equation sin x cos x = (1)/(4) are . . .

f(x)=([1+sin^(2)x,cos^(2)x,4sin2xsin^(2)x,1+cos^(2)x,4sin2xsin^(2)x,cos^(2)x,1+4sin2x])

The number of values of x in (0, pi) satisfying the equation (sqrt(3) "sin" x + "cos" x) ^(sqrt(sqrt(3)"sin" 2x -"cos" 2x+ 2)) = 4 , is

sin^(4)x+cos^(4)x=1-2sin^(2)x cos^(2)x

The values of x satisfying the system of equation 2^("sin" x + "cos"y) = 1, 16^("sin"^(2)x + "cos"^(2)y) =4 are given by

The number of values of x in [-pi,pi] satisfying the equation 2(cos x+cos2x)+sin2x(1+2cos x)=2sin x is