Home
Class 12
MATHS
100^alpha-199beta=100(100)+99(101)+98(10...

`100^alpha-199beta=100(100)+99(101)+98(102)+ . . . + 1(199).` then find the slope of line with point `(alpha,beta)` and origin.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(100^\alpha - 199\beta = 100(100) + 99(101) + 98(102) + \ldots + 1(199)\) and find the slope of the line passing through the points \((\alpha, \beta)\) and the origin \((0, 0)\), we will follow these steps: ### Step 1: Simplify the Right-Hand Side The right-hand side of the equation can be expressed as a summation: \[ \text{RHS} = \sum_{r=0}^{99} (100 - r)(100 + r) \] This can be simplified using the identity \((a - b)(a + b) = a^2 - b^2\): \[ \text{RHS} = \sum_{r=0}^{99} (100^2 - r^2) = \sum_{r=0}^{99} 100^2 - \sum_{r=0}^{99} r^2 \] Calculating \(100^2\): \[ 100^2 = 10000 \] Thus, \[ \text{RHS} = 10000 \cdot 100 - \sum_{r=0}^{99} r^2 \] ### Step 2: Calculate the Summation of Squares The formula for the sum of the squares of the first \(n\) natural numbers is: \[ \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \] For \(n = 99\): \[ \sum_{r=0}^{99} r^2 = \frac{99(99+1)(2 \cdot 99 + 1)}{6} = \frac{99 \cdot 100 \cdot 199}{6} = 328350 \] ### Step 3: Substitute Back into the Equation Now substituting back into the equation: \[ 100^\alpha - 199\beta = 10000 \cdot 100 - 328350 \] Calculating \(10000 \cdot 100\): \[ 10000 \cdot 100 = 1000000 \] Thus, \[ 100^\alpha - 199\beta = 1000000 - 328350 = 671650 \] ### Step 4: Set Up the Equation Now we have: \[ 100^\alpha - 199\beta = 671650 \] ### Step 5: Solve for \(\alpha\) and \(\beta\) Assuming \(100^\alpha = 671650 + 199\beta\), we can find values for \(\alpha\) and \(\beta\). Let’s assume \(\alpha = 3\): \[ 100^3 = 1000000 \] Then, \[ 1000000 - 199\beta = 671650 \] This gives: \[ 199\beta = 1000000 - 671650 = 328350 \] Thus, \[ \beta = \frac{328350}{199} = 1650 \] ### Step 6: Find the Slope Now we have \((\alpha, \beta) = (3, 1650)\). The slope \(m\) of the line through the points \((0, 0)\) and \((\alpha, \beta)\) is given by: \[ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1650 - 0}{3 - 0} = \frac{1650}{3} = 550 \] ### Final Answer The slope of the line is: \[ \boxed{550} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are natural numbers such that 100^(alpha)-199beta=(100)(100)+(99)(101)+(98)(102)+…..+(1)(199) , then the slope of the line passing through (alpha,beta) and origin is :

tan alpha=cot beta=a, find (alpha+beta)

Find the value of (1.99)^(2)

If sin(alpha+beta)=1 and sin(alpha-beta)=(1)/(2), where 0<=,beta<=(pi)/(2) ,then find the values of tan(alpha+2 beta) and tan(2 alpha+beta)

If cos(alpha+beta)+sin(alpha-beta)=0 and tan beta ne1 , then find the value of tan alpha .

The image of the point A(1,2) by the line mirror y=x is the point B and the image of B by the line mirror y=0 is the point (alpha,beta), then a.alpha=1,beta=-2b. alpha=,beta=0calpha=,beta=-1d. none of these

Let alpha, beta be the roots of x^(2) + bx + 1 = 0 . Them find the equation whose roots are -(alpha + 1//beta) and -(beta + 1//alpha).

A=[(1,0,0),(0,alpha,beta),(0,beta,alpha)] and abs(2A)^3=2^21 then find alpha (alpha, beta inI^+)

If alpha!=beta but alpha^(2)=5 alpha-3,beta^(2)=5 beta-3, then find the equation whose roots are (alpha)/(beta) and (beta)/(alpha)