Home
Class 12
MATHS
If 2A+B=[(0,0,3),(10,1,9),(-1,4,0)] and ...

If `2A+B=[(0,0,3),(10,1,9),(-1,4,0)] and A-2B=[(0,-5,9),(-5,3,2),(-3,2,0)]` Find the value of `(t_r(A)-t_r(B))`

A

1

B

-2

C

-1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( t_r(A) - t_r(B) \) given the equations involving matrices \( A \) and \( B \). ### Step-by-step Solution: 1. **Write the Given Equations:** We have two equations: \[ 2A + B = \begin{pmatrix} 0 & 0 & 3 \\ 10 & 1 & 9 \\ -1 & 4 & 0 \end{pmatrix} \] \[ A - 2B = \begin{pmatrix} 0 & -5 & 9 \\ -5 & 3 & 2 \\ -3 & 2 & 0 \end{pmatrix} \] 2. **Take the Trace of Both Sides:** The trace of a matrix is the sum of its diagonal elements. We will apply the trace operation to both equations. - For the first equation: \[ t_r(2A + B) = t_r\left(\begin{pmatrix} 0 & 0 & 3 \\ 10 & 1 & 9 \\ -1 & 4 & 0 \end{pmatrix}\right) \] The trace of the right-hand side is: \[ 0 + 1 + 0 = 1 \] Using the property of trace, we have: \[ t_r(2A) + t_r(B) = 1 \] Since \( t_r(2A) = 2 \cdot t_r(A) \), we can rewrite this as: \[ 2t_r(A) + t_r(B) = 1 \quad \text{(Equation 1)} \] - For the second equation: \[ t_r(A - 2B) = t_r\left(\begin{pmatrix} 0 & -5 & 9 \\ -5 & 3 & 2 \\ -3 & 2 & 0 \end{pmatrix}\right) \] The trace of the right-hand side is: \[ 0 + 3 + 0 = 3 \] Using the property of trace, we have: \[ t_r(A) - 2t_r(B) = 3 \quad \text{(Equation 2)} \] 3. **Solve the System of Equations:** Now we have a system of two equations: - \( 2t_r(A) + t_r(B) = 1 \) (Equation 1) - \( t_r(A) - 2t_r(B) = 3 \) (Equation 2) We can solve this system. From Equation 1, we can express \( t_r(B) \): \[ t_r(B) = 1 - 2t_r(A) \] Substitute \( t_r(B) \) into Equation 2: \[ t_r(A) - 2(1 - 2t_r(A)) = 3 \] Simplifying this gives: \[ t_r(A) - 2 + 4t_r(A) = 3 \] \[ 5t_r(A) - 2 = 3 \] \[ 5t_r(A) = 5 \] \[ t_r(A) = 1 \] 4. **Find \( t_r(B) \):** Substitute \( t_r(A) \) back into the equation for \( t_r(B) \): \[ t_r(B) = 1 - 2(1) = 1 - 2 = -1 \] 5. **Calculate \( t_r(A) - t_r(B) \):** Now we can find the value of \( t_r(A) - t_r(B) \): \[ t_r(A) - t_r(B) = 1 - (-1) = 1 + 1 = 2 \] ### Final Answer: \[ t_r(A) - t_r(B) = 2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A+2B=[(1,2,0),(6,-1,3),(-5,3,1)] and 2A-B=[(2,-1,5),(2,-1,6),(0,1,2)], then find tr(A)-tr(B).

If A = [(-1,2),(3,1)],B=[(1,0),(-1,0)] then the value of 2A+B+2I=

If A=[{:(3,1,2),(1,2,-3):}]" and "B=[{:(-2," "0,4),(5,-3,2):}] , find (2A-B).

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

If A=[(2 ,3,-5 ),(1, 2,-1)] and B=[(0, 5,1),(-2, 7, 3)] , find A+B and A-B

If A=[(2,3,1),(0,-1,5)] B=[(1,2,-1),(0,-1,3)] find 2A-3B

If A=[(3,9,0),(1,8,-2),(7,5,4)], B=[(4,0,2),(7,1,4),(2,2,6)] , verify that 3(A+B)=3A+3B .

If the matrices A = [{:(2,1,3),(4,1,0):}] and B = [{:(1,-1),(0,2),(5,0):}] , then (AB)^T will be

if A=[{:(2,1),(0,3),(1,-1):}] and B=[{:(0,3,5),(1,-7,2):}] , then verify (BA)^(T) = A^(T)B^(T) .

If A^T=[(-2,3),(1,2)] and B =[(-1,0),(1,2)] ,then find (A +2B)^T .