Home
Class 11
MATHS
If origin is the orthocentre of a triang...

If origin is the orthocentre of a triangle formed bythe points `(cos alpha, sin alpha,0), (cos beta, sin beta,0), (cos gamma, sin gamma,0) ` then `sumcos(2alpha-beta-gamma)= ` -

Text Solution

Verified by Experts

The correct Answer is:
3
Promotional Banner

Similar Questions

Explore conceptually related problems

If ("Cos"alpha, "Sin"alpha,0),(cos beta, sin beta,0), (cos gamma, sin gamma, 0) are vertices of a triangle then circum radius R is

|(sin alpha, cos alpha, sin (alpha+delta)),(sin beta, cos beta, sin(beta+delta)),(sin gamma, cos gamma, sin (gamma+delta))|=

cos alpha * sin (beta - gamma ) + cos beta * sin ( gamma - alpha ) + cos gamma * sin ( alpha - beta )=

cos alpha sin (beta-gamma)+cos betasin (gamma-alpha+cos gamma sin (alpha-beta)=

If cos alpha + cos beta + cos gamma =3 , " then " sin alpha + sin beta + sin gamma =

If cos alpha + cos beta =0 = sin alpha + sin beta " then " cos (alpha - beta )=

If cosalpha+cosbeta+cosgamma=0=sin alpha+sinbeta+singamma then cos^2alpha+cos^2beta+cos^2gamma=