Home
Class 11
MATHS
If tan""((theta)/(2))=sqrt([(1-e)/(1+e)]...

If `tan""((theta)/(2))=sqrt([(1-e)/(1+e)]) tan""((alpha)/(2))` then ` cos alpha=`

A

`(1 - e cos theta)/(cos theta + e)`

B

`(1 + e cos theta)/(cos theta + e)`

C

`(1-e cos theta)/(cos theta - e)`

D

`(cos theta - e)/(1 - e cos theta)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(sec alpha - tan alpha ) - (1)/( cos alpha)=

Statement-I : If f(theta)=(cot theta)/(1+cot theta) and alpha+ beta=(5pi)/(4) then f(alpha) f(beta)=(1)/(2) Statement-II : If alpha+ beta=(pi)/(2) and beta+ gamma= alpha then tan alpha= tan beta+ 2tan gamm Statement-III sin^(2) alpha+ cos^(2) (alpha+ beta)+2 sin alpha beta cos (alpha+beta) is independent of alpha only

If (sin (theta+ alpha))/(cos (theta- alpha))=(1-M)/(1+M) then Tan ((pi)/(4)- theta). Tan ((pi)/(4)- alpha)=

If (1+sqrt(1+a)) tan alpha =1 + sqrt(1- alpha ) then sin 4 alpha =

If tan ( alpha + beta) = sqrt(3), tan ( alpha - beta ) =1 then tan 6 beta =

If A=[(0,-"tan"(alpha)/(2)),("tan"(alpha)/(2),0)] and I is the identity matrix of order 2, show that I+A=(I-A)[(cos alpha,-sin alpha),(sin alpha, cos alpha)]

If "cosec" theta =[(tan^(2) [(alpha - pi)//4]-1)/(tan^(2)[(alpha-pi//4)]+1)+ cos ""(alpha)/(2) cot 4 alpha ] sec ""(9alpha)/2 " then" theta =

(sin^(2)alpha)/(1+cot^(2) alpha) + (tan^(2)alpha)/((1+tan^(2) alpha)^(2)) + cos^(2) alpha =

If α, β are the eccentric angles of the extremeties of a focal chord of the ellipse (i) e cos (alpha+beta)/(2)=cos (alpha-beta)/(2) (ii) tan (alpha/2)tan (beta/2)=(e-1)/(e+1)

If sec(theta+alpha)+sec(theta-alpha)=2sec theta and cos alpha!=1 , prove that cos theta=+-sqrt"cos"(alpha)/2