Home
Class 11
MATHS
2 sin^(2) beta + 4 cos( alpha+ beta) sin...

`2 sin^(2) beta + 4 cos( alpha+ beta) sin alpha sin beta + cos ( 2 alpha + 2 beta )=`

A

`sin 2 alpha`

B

`cos 2 alpha`

C

`tan 2 alpha`

D

`cot 2 alpha`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(2)alpha + cos^(2) (alpha + beta) + 2 sin alpha sin beta cos (alpha + beta) is independent of alpha .

If tan alpha and tan beta are the roots of the equation x^(2) +px + q = 0 , then the value of sin^(2) (alpha +beta) + p cos (alpha + beta) sin (alpha + beta) + q cos^(2) (alpha + beta) is

If cos alpha + cos beta =0 = sin alpha + sin beta " then " cos (alpha - beta )=

If sin alpha = sin beta and cos alpha = cos beta then

If cos alpha+cos beta=0=sin alpha+sin beta , then cos 2 alpha+cos 2beta is equal to

Evaluate {:[( cos alpha cos beta , cos alpha sin beta , -sin alpha ),( -sin beta , cos beta, 0),( sin alpha cos beta, sin alpha sin beta, cos alpha ) ]:} =0

Statement-I : If f(theta)=(cot theta)/(1+cot theta) and alpha+ beta=(5pi)/(4) then f(alpha) f(beta)=(1)/(2) Statement-II : If alpha+ beta=(pi)/(2) and beta+ gamma= alpha then tan alpha= tan beta+ 2tan gamm Statement-III sin^(2) alpha+ cos^(2) (alpha+ beta)+2 sin alpha beta cos (alpha+beta) is independent of alpha only

(i) sin (alpha + beta) = sin alpha cos beta + cos alpha sin beta) (ii) sin (alpha-beta)= sin alpha cos beta- cos alpha sin beta Proof

If tan alpha, tan beta are the roots of the equation x^(2)+px+q=0 then sin^(2) (alpha+ beta)+ p sin(alpha+ beta) (cos+beta) +q cos^(2)(alpha+ beta)=