Home
Class 11
MATHS
Let P(x) = ((1- cos 2 x + sin 2x)/(1+ co...

Let `P(x) = ((1- cos 2 x + sin 2x)/(1+ cos2x + sin2x))^(2) + ((1+ cot x + cot^(2) x)/( 1+ tan x+ tan^(2) x) )`, then the minimum value of `P(x)` equals

A

1

B

2

C

4

D

16

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int (1)/(2 sin^(2) x + 3 sin x cos x - 2 cos^(2) x ) dx =

If y = Tan ^(-1) ((cos x- sin x)/(cos x + sin x)) then (d ^(2) y)/(dx ^(2))=

If tan(cot x) = cot (tan x) , then sin 2x =

If sin x + sin^(2) x =1 " then " cos^(8) x + 2 cos^(6) x + cos^(4) x =

If sin^(2) x tan x + cos ^(2) x cot x - sin 2 x = 1 + tan x + cot x x in (0, pi) then x =

If f(x)=|(1+sin^(2)x,cos^(2)x,4sin2x),(sin^(2)x,1+cos^(2)x,4sin2x),(sin^(2)x,cos^(2)x,1+4sin2x)| then the maximum value of f(x) is

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x

The expression (1+tan x +tan^(2)x)(1- cot x + cot^(2)x) has the positive values for x, given by