Home
Class 11
MATHS
Suppose "cos" (2pi)/(7) + "cos" (4pi)/(7...

Suppose `"cos" (2pi)/(7) + "cos" (4pi)/(7) + "cos" (6pi)/(7) = - (1)/(2) and "cos" (2pi)/(7) "cos"(4pi)/(7) "cos" (6pi)/(7) = - (1)/(8)`, then the numerical value of `"cosec"^(2) (pi)/(7) + "cosec"^(2)(2pi)/(7) + "cosec"^(2) (3pi)/(7)` must be

Text Solution

Verified by Experts

The correct Answer is:
8
Promotional Banner

Similar Questions

Explore conceptually related problems

sin "" (2pi)/(7) + sin "" (4pi)/(7) + sin "" (8pi)/(7) =

cos. (pi)/(7) + cos. (2pi)/(7) + cos. (3pi)/(7) + cos. (4pi)/(7) + cos. (5pi)/(7) + cos. (6pi)/(7)=

cos (pi/7) cos ((2pi)/(7) ) cos ( (4pi )/(7) ) =

Prove that cos. (2pi)/(7). Cos. (4pi)/(7). Cos. (8pi)/(7)=(1)/(8)

The value of cos""(pi)/(7)+cos""(2pi)/(7)cos""(3pi)/(7)+cos""(4pi)/(7)+cos""(5pi)/(7)+cos""(6pi)/(7)+cos""(7pi)/(7) is

Prove that cos""(2pi)/7.cos""(4pi)/7.cos""(8pi)/7=1/8 .