Home
Class 11
MATHS
If cos theta (1) = 2 cos theta (2), the...

If `cos theta _(1) = 2 cos theta _(2), ` then `tan (( theta _(1) + theta _(2))/(2)) tan (( theta _(1) - theta _(2))/(2))` is equal to

A

`(1)/(3)`

B

`-(1)/(3)`

C

1

D

-1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

IF tan theta _1 = k cot theta _2 , then ( cos ( theta _1+ theta _2))/(cos ( theta _1 - theta_2)) =

If Cos theta_(1) + Cos theta_(2) + Cos theta_(3) = 3 then Sin theta_(1) + Sin theta_(2) + Sin theta_(3) =

If Tan theta_(1)=k cot theta_(2) then (cos (theta_(1)+theta_(2)))/(cos (theta_(1)-theta_(2)))=

If sin theta_(1) sin theta_(2) - cos theta_(1)cos theta_(2)+1=0 , then the value of tan(theta_(1)//2)cot(theta_(1)//2) is equal to:

If sin theta_(1)sin theta_(2)-cos theta_(1)cos theta_(2)+1=0 , then the value of tan(theta_(1)//2)cot(theta_(1)//2) is equal to

Show that (1)/( cos theta ) -cos theta =tan theta .sin theta

If Sin theta_(1) + Sin theta_(2) + Sin theta_(3) = 3 then Cos theta_(1) + Cos theta_(2) + Cos theta_(3) =

If sec theta + cos theta = 2 then sin^(2) theta + tan^(2) theta =