Home
Class 11
MATHS
If tan alpha = (P)/(q) "where" alpha = 6...

If `tan alpha = (P)/(q) "where" alpha = 6 beta, alpha` being an acute angle then `(1)/(2) ["p cosec" 2 beta - q sec 2 beta]` is equal to

A

`sqrt(p^(2) + q^(2))`

B

`sqrt(p^(2) - q^(2))`

C

`sqrt(2p^(2) + q^(2))`

D

`2 sqrt(p^(2) + q^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

(alpha + beta)^(2) - 2 alpha beta =

If alpha, beta are acute angles and cos 2 alpha=(3 cos 2 beta-1)/(3-cos 2 beta) then

If alpha , beta are supplementary angles , then cos^(2)alpha + sin^(2) beta =

If alpha , beta are complementary angles , then sin^(2) alpha + sin^(2) beta =

( tan alpha + " cosec " beta )^(2) - ( cot beta - sec alpha )^(2) =

If tan alpha = m//(m+1), tan beta =1//(2m + 1) , then alpha + beta =

(sec alpha * sec beta + tan alpha tan beta )^(2)-( sec alpha * tan beta + tan alpha * sec beta )^(2) =

If cos alpha+cos beta=0=sin alpha+sin beta , then cos 2 alpha+cos 2beta is equal to