Home
Class 11
MATHS
The expression (tan^(4)x + 2tan^2x+1)cos...

The expression `(tan^(4)x + 2tan^2x+1)cos^(2)x, ` when `x = pi//12 ` , can be equal to

A

`4 (2 - sqrt(3))`

B

`4 (sqrt(2) + 1)`

C

`16 cos^(2) pi//2`

D

`16 sin^(2) pi//12`

Text Solution

Verified by Experts

The correct Answer is:
A, D
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(tan x) (2 + 4 cos^(2) x) = 2 then x =

If tan(x+pi/4)=a , then sec^(2)x =

The expression (1+tan x +tan^(2)x)(1- cot x + cot^(2)x) has the positive values for x, given by

If 2Tan^(-1)x+Sec^(-1)x=pi//2 then x =

If tan^(-1)x+2cot^(-1)x=(2pi)/3 , then x is equal to

If sec x + sec^(2) x = 1 then the value of tan^(8) x - tan^(4) x - 2 tan^(2) x +1 will be equal to 0

The number of solutions of the equation cos 6 x + tan^(2) x + cos 6 x tan ^(2) x = 1 , in the interval [0, 2 pi] is

If exp { (tan^(2) x -tan^(4) x + tan^(8) x - tan^(6) x …. ) log_(e) 16 } , 0 lt x lt pi // 4 , satisfies the quadratic equation x^(2) - 3x + 2 = 0 , then value of cos^(2) x + cos^(4) x is