Home
Class 11
MATHS
Let P(k) = (1+"cos"(pi)/(4k))(1+"cos"((2...

Let `P(k) = (1+"cos"(pi)/(4k))(1+"cos"((2k-1)pi)/(4k))(1 + "cos" ((2k+1)pi)/(4k))(1+"cos"((4k-1)pi)/(4k))`. Then

A

`P(3) = (1)/(16)`

B

`P(4) = (2- sqrt(2))/(16)`

C

`P(5) = (3 - sqrt(5))/(32)`

D

`P(6) = (2 - sqrt(3))/(16)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(k=1)^3 cos^(2)((2k-1)(pi)/(12))=

tan((pi)/4+1/2"cos"^(-1)a/b)+tan((pi)/4-1/2"cos"^(-1)a/b)=

Cos^(-1)("cos"(5pi)/4)=

If (3-"tan"^(2)(pi)/(7))/(1-"tan"^(2)(pi)/(7))="k cos" (pi)/(7) then the value of k is

The value of 1+sum_(k=0)^14{(cos)((2k+1)pi)/(15)+(isin)((2k+1)pi)/(15)} is

For 0 lt theta lt (pi)/(2) ,the, solution (s) of sum_(k = 1)^(6) cosec (theta + ((k - 1)pi)/(4)) cosec (0 + (k pi)/(4)) = 4 sqrt(2) is /are

f(x) ={{:((1-sqrt(2)sin x)/(pi -4x),"if "x ne (pi)/(4)),("k","if "x=(pi)/(4)):} continous at x=(pi)/(4) , then K=