Home
Class 12
PHYSICS
The Bohr model for the H-atom relies on ...

The Bohr model for the H-atom relies on the Coulomb's law of electrostatics. Coulomb's law has not directly been verified for very short distances of the order of angstroms. Supposing Coulomb's law between two opposite charge `+q_(1),-q_(2)` is modified to `|F|=(q_(2)q_(1))/((4pi epsi_(0)))(1)/(r^(2)),r ge R_(0)`
`=(q_(1)q_(2))/(4pi epsi_(0))(1)/(R_(0)^(2))((R_(0))/(r))^(e),r lt R_(0)` Calculate in such a case, the ground state energy of a H-atom if `epsi=0.1 R_(0)=1Å`

Text Solution

Verified by Experts

Here for very small distance `r le R_(0)` (where `R_(0)=iÅ)` in the modified format of Coulomb.s law, Taking `epsi=2+delta`
`F=(q_(1)q_(2))/(4pi epsi_(0)R_(0)^(2))((R_(0))/(r))^(2+delta).....(1)`
`=(ke^(2))/(R_(0)^(2))xxR_(0)^(2)xx(R_(0)^(delta))/(r^(2+6)) ( :.k=(1)/(4pi epsi_(0)) and q_(1)=q_(2)=e)`
`:.F=ke^(2)xx(R_(0)^(delta))/(r^(2+delta))....(2)`
`=9xx10^(9)xx(1.6xx10^(-19))^(2)xx(R_(0)^(delta))/(r^(2+delta))`
`:.F=(2.304xx10^(-28))xx (R_(0)^(delta))/(r^(r+delta))......(3)`
Assuming for the sake of simplicity.
`3=3.304xx10^(-28)Nm^(2)=f...(4)`
`F=fxx(R_(0)^(delta))/(r^(2+delta))....(5)`
`:. (mv^(2))/(r)=fxx(R_(0)^(delta))/(r^(+delta)) ( :.` F is centripetal force)
`:.v^(2)=(f)/(m)xx((R_(0)^(delta))/(r^(delta+1)))`
`:.v=((R_(0)^(delta))/(m))^(1//2)xx(1)/(r^(((delta+1)/(2)))).....(6)`
According to Bohr.s first postulate, for n=1
`mvr=(h)/(2pi)`
`r=(h)/(2pi mv).....(7)`
`:.r=(h)/(2pim)xx((m)/(fR_(0)^(delta)))^(1//2)xxr^(((delta+1)/(2)))`
Multiplying by `r^(-1)` on both the sides,
`1=(h)/(2pim)xx((m)/(fR_(0)^(delta)))^(1//2)xxr^(((delta+1)/(2)))`
`r^(((delta+1)/(2)))=((2pi m)/(h))xx((fR_(0)^(delta))/(fR_(0)^(delta)))^(1//2)`
`r^(((delta+1)/(2)))=((4pi^(2)m^(2))/(h^(2))xx(fR_(0)^(delta))/(m))^(1//2)`
`r^(((delta+1)/(2)))=((4pi^(2)mfR_(0)^(delta))/(h^(2)))^(1//2)`
Taking power `((2)/(delta-1))` on both the sides,
`r=((4pi^(2)mfR_(0)^(delta))/(h^(2)))^(1//delta-1)`
`:. r=((h^(2))/(4pi^(2)mfR_(0)^(delta)))^(1//delta-1)....(8)`
Now `in =2+delta` (as per equation (1))
`:.0.1=2+delta ( :.` From statement `epsi=0.1`)
`:.delta=-1.9....(9)`
`:. r=((h^(2))/(4pi^(2)mfR_(0)^(delta)))^(1//delta-1)`
`:. r=((h^(2))/(4pi^(2)mfR_(0)^(delta)))^(1//2.9)`
By placing respective values, new orbital radius of electron in the ground state of H-atom,
`r={((6.625xx10^(-34))^(2))/(4xx(3.14)^(2)xx9.1xx10^(-31)xx2.304xx10^(-28xx(1xx10^(-10))^(-1.9)))}`
`:.r{((6.625)^(2))/(4xx(3.14)^(2)xx9.1xx2.304xx10^((-68+31+28-19)))}^(1//2.9)`
`:.r=(5.308xx10^(-2)xx10^(-28))^(1//2.9)`
`:.r=(5.308xx10^(-30))^(1//2.9)`
`:.r=8.53xx10^(-11)m`
`:.r=0.8053xx10^(-10)m`
`:.r=0.8053Å`
Above value is smaller than `1Å`
Since above orbital radius in the ground state, is `r=r_(1)=8.053xx10^(-11)m...(10)`
Now taking `r=r_(1) and v=v_(1)` in equation (7),
`v_(1)=(h)/(2pi mr_(1))`
`=(6.625xx10^(-34))/(2xx3.14xx9.1xx10^(-31)xx8.053xx10^(-11))`
`=1.439xx10^(-2)xx10^(-34+31+11)`
`:.v_(1)=1.439xx10^(6)m//s`
`rArr` Kinetic energy,
`K_(1)=(1)/(2)mv_(1)^(2)`
`=(1)/(2)xx9.1xx10^(-31)xx(1.439xx10^(6))^(2)`
`:.K_(1)=9.422xx10^(-19)J`
`:.K_(1)=(9.422xx10^(-19))/(1.6xx10^(-19))=5.889eV`
Since, in H-atom electron and proton are separated by `R_(0)=1Å`, their electrostatic potential energy is,
`U_(0)=k(q_(1)q_(2))/(R_(0))k((e)-(e))/(R_(0))`
`:.U_(0)=-(ke^(2))/(R_(0))=-(f)/(R_(0))`
`:.U_(0)=-(2.304xx10^(-28))/(1xx10^(-10))=-2.304xx10^(-18)J`
`:.U_(0)=-(2.304xx10^(-18))/(1.6xx10^(-19))eV`
`:.U_(0)=-14.4eV`
Now, in the process when distance between electron and proton in H-atom decreases from `R_(0)=1Å r_(1)=0.8053Å`, if additional potential energy sotred is U. then.
`U.=int dU=int (-F)dr ( :. F=-(dU)/(dr))`
`:. U.= int-kq_(1)q_(2)(R_(0)^(delta))/(r^(2+delta))dr` (From equation (3))
`:.U. int -k(e)(-e)(R_(0)^(delta))/(r^(2+delta))dr`
`=ke^(2)R_(0)^(delta)int_(R_(0))^(r) r^(-2-delta)dr`
`=fR_(0)^(delta){(r^(-1-delta))/(-1-delta)}_(R_(0))^(r)`
`-(fR_(0)^(delta))/(1+delta){(1)/(r^(1+delta))}_(R_(0))^(r)`
`=-(2.304xx10^(-28)xx(10^(-10))^(-1.9))/(1-1.9){(1)/(r^(1-1.9))-(1)/(R_(0)^(1-1.9))}`
`=(2.304xx10^(-28)xx10^(19))/(0.9)(r^(0.9-R_(0)^(0.9))`
`=2.56xx10^(-9){(0.8053xx10^(-10))^(0.9)-(1xx10^(-10))^(0.9)}`
`=2.56xx10^(-9)xx10^(-9){(0.8053)^(0.9)-1}`
`=2.56xx10^(-18){0.8229-1}`
`=2.56xx10^(-18)(0.1771)`
`=0.4534xx10^(-18)J`
`:.U.=-(0.4534xx10^(-18))/(1.6xx10^(-19))eV`
`:.U.=-2.834eV`
`rArr U_(1).=U_(0)+U.=(-14.4)+(-2.834)`
`:.U_(1)=-17.234eV`
Now required total energy of electron in the final state,
`E_(f)=K_(1)+U_(1)`
`=5.889xx+(-17.234)`
`:.E_(f)=-11.345 eV`
Promotional Banner

Topper's Solved these Questions

  • ATOMS

    KUMAR PRAKASHAN|Exercise Section-D (Multiple Choice Questions (MCQs)) (MCQs From .DARPAN Based On Textbook)|25 Videos
  • ATOMS

    KUMAR PRAKASHAN|Exercise Section-D (Multiple Choice Questions (MCQs)) (MCQs From .DARPAN Based On Textbook) (Atomic Spectra)|11 Videos
  • ATOMS

    KUMAR PRAKASHAN|Exercise SECTION-C (NCERT EXEMPLAR SOLUTION) ( Short Answer Type Questions)|5 Videos
  • ALTERNATING CURRENTS

    KUMAR PRAKASHAN|Exercise SECTION-D MCQs (COMPETITIVE EXAMS)|64 Videos
  • BOARD'S QUESTION PAPER MARCH-2020

    KUMAR PRAKASHAN|Exercise PART-B SECTION -C|4 Videos

Similar Questions

Explore conceptually related problems

According to Coulomb's law force between two charges q_(1) and q_(2) at 'r' distance apart....

The inverse square law in electrostatic is |F|=(e^(2))/((4pi epsi_(0))*r^(2)) for the force between an electrona nd a proton. The ((1)/(r)) dependence of |F| can be understood in quantum theory as being due to the fact that the particle of light (photon) is massless. If photons had a mass m force would be modified to |F|=(e^(2))/((4pi epsi_(0))r^(2))[(1)/(r^(2))+(lambda)/(r)] exp(-lambdar) where lambda=(m_(p)c)/(h) and h=(h)/(2pi) . Estimate the change in the ground state energy of a H-atom if m_(p) were 10^(-6) times the mass of an electron

If a proton had a radius R and the charge was uniformly distributed, calculate using Bohr theory, the ground state energy of a H-atom when (i) R=0.1 Å and (ii) R=10 Å

For spherical symmetrical charge distribution, variation of electric potential with distance from centre is given in diagram Given that : V=(q)/(4pi epsilon_(0)R_(0)) for r le R_(0) and V=(q)/(4 piepsilon_(0)r) for r ge R_(0) Then which option (s) are correct :

A classical model for the hydrogen atom consists of a singal electron of mass m_(e) in circular motion of radius r around the nucleous (proton). Since the electron is accelerated, the atom continuously radiates electromagnetic waves. The total power P radiated by the atom is given by P = P_(0)//r^(4) where P_(0) = (epsi^(6))/(96pi^(3)epsi_(0)^(3)c^(3)m_(epsi)^(2)) (c = velocity of light) (i) Find the total energy of the atom. (ii) Calculate an expression for the radius r(t) as a function of time. Assume that at t = 0 , the radiys is r_(0) = 10^(-10)m . (iii) Hence or otherwise find the time t_(0) when the atom collapses in a classical model of the hydrogen atom. Take: [2/(sqrt(3))(e^(2))/(4piepsi_(0))1/(m_(epsi)c^(2)) = r_(e) ~~ 3 xx 10^(-15) m]

sum_(r=0)^(1theta)((10),(r)).2^(10-r)(-5)^(r)=.........

Show that (b-c)/(r _(1))+ (c-a)/(r _(2))+(a-b)/(r _(3)) =0.

The electric force between two electric charges is given by F=k(q_(1)q_(2))/(r^(2)) where r is the distance between q_(1) and q_(2) . Give the dimensional formula of k.