Home
Class 12
MATHS
veca and vecb are bot vector absveca=abs...

`veca and vecb are bot` vector `absveca=absvecb=1` then angle between `veca+vecb+(vecaxxvecb) and veca`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle between the vector \( \vec{A} + \vec{B} + (\vec{A} \times \vec{B}) \) and the vector \( \vec{A} \). Given that \( |\vec{A}| = |\vec{B}| = 1 \) and that \( \vec{A} \) and \( \vec{B} \) are perpendicular, we can follow these steps: ### Step 1: Understand the vectors We know that: - \( |\vec{A}| = 1 \) - \( |\vec{B}| = 1 \) - \( \vec{A} \cdot \vec{B} = 0 \) (since they are perpendicular) ### Step 2: Calculate the dot product We want to find the angle \( \theta \) between the vector \( \vec{A} + \vec{B} + (\vec{A} \times \vec{B}) \) and \( \vec{A} \). We use the formula for the cosine of the angle between two vectors: \[ \cos \theta = \frac{(\vec{A} + \vec{B} + (\vec{A} \times \vec{B})) \cdot \vec{A}}{|\vec{A} + \vec{B} + (\vec{A} \times \vec{B})| |\vec{A}|} \] ### Step 3: Calculate the numerator Now, we calculate the dot product in the numerator: \[ (\vec{A} + \vec{B} + (\vec{A} \times \vec{B})) \cdot \vec{A} = \vec{A} \cdot \vec{A} + \vec{B} \cdot \vec{A} + (\vec{A} \times \vec{B}) \cdot \vec{A} \] Substituting the known values: - \( \vec{A} \cdot \vec{A} = 1 \) - \( \vec{B} \cdot \vec{A} = 0 \) - \( (\vec{A} \times \vec{B}) \cdot \vec{A} = 0 \) (since the cross product is perpendicular to both vectors) Thus, the numerator simplifies to: \[ 1 + 0 + 0 = 1 \] ### Step 4: Calculate the denominator Next, we need to calculate the magnitude of the vector \( \vec{A} + \vec{B} + (\vec{A} \times \vec{B}) \): \[ |\vec{A} + \vec{B} + (\vec{A} \times \vec{B})|^2 = |\vec{A}|^2 + |\vec{B}|^2 + |\vec{A} \times \vec{B}|^2 + 2(\vec{A} \cdot \vec{B}) + 2(\vec{A} \times \vec{B}) \cdot \vec{A} + 2(\vec{A} \times \vec{B}) \cdot \vec{B} \] Since \( |\vec{A}| = 1 \) and \( |\vec{B}| = 1 \), and \( \vec{A} \cdot \vec{B} = 0 \): \[ = 1^2 + 1^2 + |\vec{A} \times \vec{B}|^2 + 0 + 0 + 0 \] Now, \( |\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin(90^\circ) = 1 \), so: \[ = 1 + 1 + 1 = 3 \] Thus, \( |\vec{A} + \vec{B} + (\vec{A} \times \vec{B})| = \sqrt{3} \). ### Step 5: Substitute into the cosine formula Now we substitute back into the cosine formula: \[ \cos \theta = \frac{1}{\sqrt{3} \cdot 1} = \frac{1}{\sqrt{3}} \] ### Step 6: Find the angle Finally, we find the angle \( \theta \): \[ \theta = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right) \] ### Final Answer The angle between \( \vec{A} + \vec{B} + (\vec{A} \times \vec{B}) \) and \( \vec{A} \) is \( \theta = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right) \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The angle between (vecA+vecB)&(vecAxxvecB)

If |veca - vecb|=|veca| =|vecb|=1 , then the angle between veca and vecb , is

If veca and vecb are unit vector and theta is the angle between then, then |(veca - vecb)/2| is:

The angle between vector (vecA) and (vecA-vecB) is :

If |veca.vecb|= |veca xx vecb| , then the angle between veca and vecb is

If veca and vecb are two unit vectors and the angle between them is 60^(@) then ((1+veca.vecb))/((1-veca.vecb)) is

Let veca and vecb be two non-zero vectors perpendicular to each other and |veca|=|vecb| . If |veca xx vecb|=|veca| , then the angle between the vectors (veca +vecb+(veca xx vecb)) and veca is equal to :

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca, |veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: The value of sin(theta/2) is (A) 1/2 |veca-vecb| (B) 1/2|veca+vecb| (C) |veca-vecb| (D) |veca+vecb|

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca, |veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: If vecc is a unit vector and equal to the sum of veca and vecb the magnitude of difference between veca and vecb is (A) 1 (B) sqrt(2) (C) sqrt(3) (D) 1/sqrt(2)