Home
Class 12
MATHS
If 15sin^4alpha+10cos^4alpha=6 , then 2...

If `15sin^4alpha+10cos^4alpha=6 ` , then `27sec^6alpha+8cosec^6 alpha =`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 15\sin^4\alpha + 10\cos^4\alpha = 6 \) and find the value of \( 27\sec^6\alpha + 8\csc^6\alpha \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 15\sin^4\alpha + 10\cos^4\alpha = 6 \] ### Step 2: Substitute \( x = \sin^2\alpha \) and \( y = \cos^2\alpha \) Using the identity \( \sin^2\alpha + \cos^2\alpha = 1 \), we can express \( \cos^2\alpha \) as \( y = 1 - x \). Thus, we can rewrite the equation as: \[ 15x^2 + 10(1 - x)^2 = 6 \] ### Step 3: Expand and simplify Now, expand the equation: \[ 15x^2 + 10(1 - 2x + x^2) = 6 \] \[ 15x^2 + 10 - 20x + 10x^2 = 6 \] Combine like terms: \[ 25x^2 - 20x + 10 = 6 \] Subtract 6 from both sides: \[ 25x^2 - 20x + 4 = 0 \] ### Step 4: Solve the quadratic equation Now we can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 25 \), \( b = -20 \), and \( c = 4 \). \[ x = \frac{20 \pm \sqrt{(-20)^2 - 4 \cdot 25 \cdot 4}}{2 \cdot 25} \] \[ x = \frac{20 \pm \sqrt{400 - 400}}{50} \] \[ x = \frac{20}{50} = \frac{2}{5} \] ### Step 5: Find \( \sin^2\alpha \) and \( \cos^2\alpha \) Since \( x = \sin^2\alpha \): \[ \sin^2\alpha = \frac{2}{5} \] Then, using \( \cos^2\alpha = 1 - \sin^2\alpha \): \[ \cos^2\alpha = 1 - \frac{2}{5} = \frac{3}{5} \] ### Step 6: Calculate \( \sec^2\alpha \) and \( \csc^2\alpha \) Now we can find \( \sec^2\alpha \) and \( \csc^2\alpha \): \[ \sec^2\alpha = \frac{1}{\cos^2\alpha} = \frac{1}{\frac{3}{5}} = \frac{5}{3} \] \[ \csc^2\alpha = \frac{1}{\sin^2\alpha} = \frac{1}{\frac{2}{5}} = \frac{5}{2} \] ### Step 7: Calculate \( \sec^6\alpha \) and \( \csc^6\alpha \) Now we find \( \sec^6\alpha \) and \( \csc^6\alpha \): \[ \sec^6\alpha = \left(\frac{5}{3}\right)^3 = \frac{125}{27} \] \[ \csc^6\alpha = \left(\frac{5}{2}\right)^3 = \frac{125}{8} \] ### Step 8: Substitute into the expression Now substitute these values into the expression \( 27\sec^6\alpha + 8\csc^6\alpha \): \[ 27\sec^6\alpha + 8\csc^6\alpha = 27 \cdot \frac{125}{27} + 8 \cdot \frac{125}{8} \] \[ = 125 + 125 = 250 \] ### Final Answer Thus, the value of \( 27\sec^6\alpha + 8\csc^6\alpha \) is: \[ \boxed{250} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 15 sin^(4)alpha+10cos^(4)alpha=6 , then the value of 8 cosec^(6)alpha+27 sec^(6)alpha is

If 15sin^4alpha+10cos^4alpha=6 then find the value of 8cosec^6alpha+27sec^6alpha .

If 10sin^(4)alpha+15cos^(4)alpha=6, then 81cos ec^(8)alpha+16sec^(8)alpha is equal to

If sin alpha+ cos alpha=n , then sin^(6)alpha+ cos^(6)alpha in terms of n is ________

If 10sin^(4)alpha+15cos^(4)alpha=6, find the value of 27cos ec^(6)alpha+8sec^(6)alpha

If 10sin^(4)alpha+15cos^(4)alpha=6 then the value of 9cos ec^(4)alpha+8sec^(4)alpha-75 is

If 10sin^(4)alpha+15cos^(4)alpha=6 and the value of 9"cosec"^(4)alpha+8 sec^(4) alpha is S, then find the value of (S)/(25) .

If sin alpha/2 + cos alpha/2=1.4 , then: sin alpha cos alpha =

If 10sin^(4)alpha+15cos^(4)alpha=6, then find the value of 27cos ec^(6)alpha+8sec^(6)alpha.